

RI. SE

March 12th, 2024

Kateryna Mishchenko & Nishat I Mowla

RISE

Introduction to AI testing

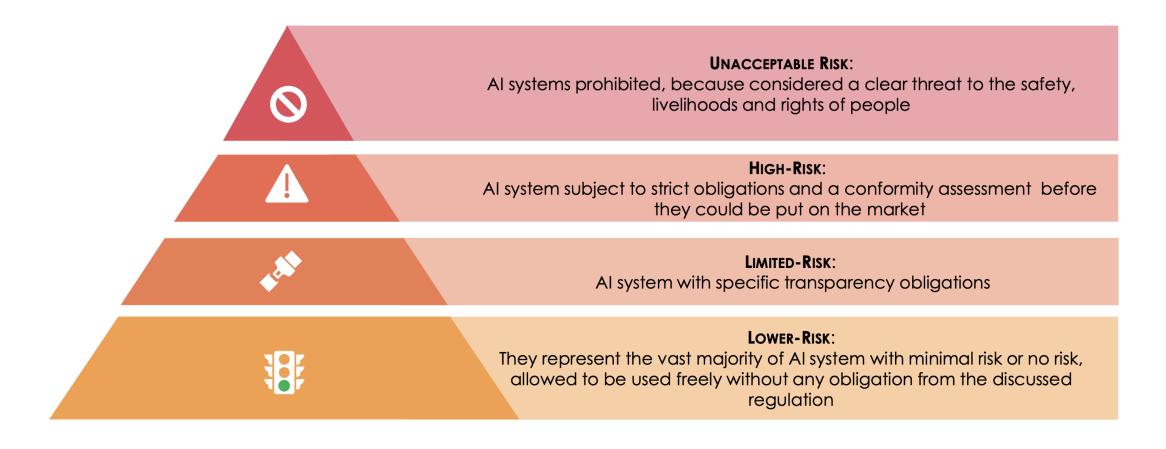
About AI testing

What:

Testing Al systems is s a vital part of the development and deployment of Al systems since it ensures their accuracy, reliability, safety, efficiency and effectiveness

Why:

Al testing builds trust and confidence in realworld applications and helps in identifying and rectifying potential issues early, thereby improving the quality of software releases.


How:

One instrument to emphasize the importance and ensure the safety and reliability of Al systems is the **Al Act** (enters into force 2024-2026).

It lays down harmonized rules on AI, aiming to balance the socio-economic benefits and potential risks of AI technologies placed on the European market.

Al Act: risk-based approach

Source: https://www.iasonltd.com/doc/jit/2021/European_Commission_Regulation_on_Al.pdf

About the Standards related to Al Act

• ISO/IEC TR 29119-11:2020 Software and systems engineering — Software testing — Part 11: Guidelines on the testing of Al-based systems

Provides an introduction to AI-based systems, new challenges and opportunities for testing them.

This document explains those characteristics which are specific to AI-based systems and explains the corresponding difficulties of specifying the acceptance criteria for such systems.

• ISO/IEC AWITS 29119-11 Software and systems engineering — Software testing — Part 11: Testing of AI systems

Describes testing techniques applicable for AI systems in the context of the AI system life cycle model stages

Shows how AI and ML assessment metrics can be used in the context of those testing techniques. It also maps testing processes to the verification and validation stages in the AI system life cycle.

• ISO/IEC 25059 Software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE)

Outlines a quality model for AI systems and provide guidelines for measuring and evaluating the quality of AI systems, focusing on characteristics like accuracy, interpretability, robustness, fairness, privacy, and security.

Challenges in AI Testing

Some challenges related to AI testing

- Testing AI systems comes with unique challenges, such as the unpredictability of AI behaviour, the difficulty in defining the right metrics for success, and the complexity of creating diverse and representative test cases.
- ISO/IEC AWI TS 29119-11 "Software and systems engineering Software testing Part 11: Testing of AI systems" describes testing techniques and metrics for AI systems in the context of the AI system life cycle model stages. According to it, some of **challenges** are:

Data testing:

issues with data quality, diversity, privacy, labeling, temporal sequencing, data drift, and potential biases.

Explainability:

Arises from "black box", nature, making it difficult to understand why they make certain decisions.

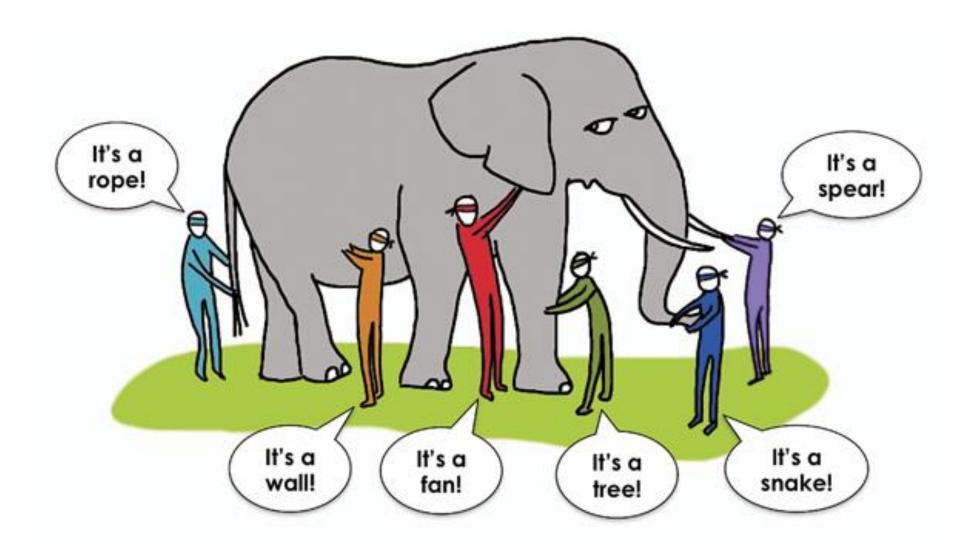
Continuous Learning:

often learn and adapt over time, which means they need to be continuously tested and monitored

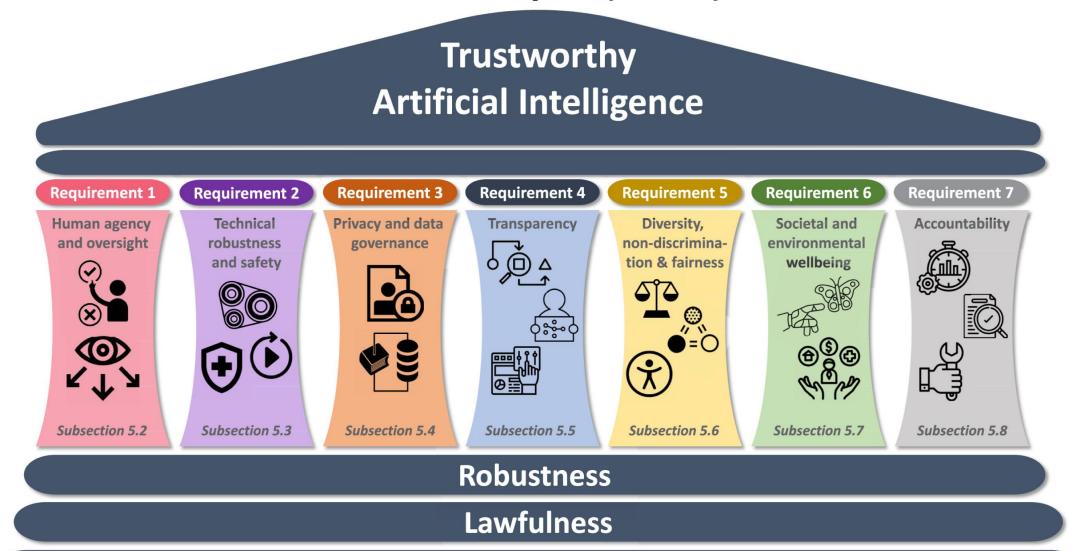
Transparency:

arises "black box" nature, sensitivity of training data, dynamic learning, potential for bias, and the trade-off between model accuracy and explainability.

Trustworthiness:


arises from the "black box" nature, the need for security against manipulation, the requirement for data privacy, the necessity for accountability, and the complexity of ensuring fairness and non-discrimination.

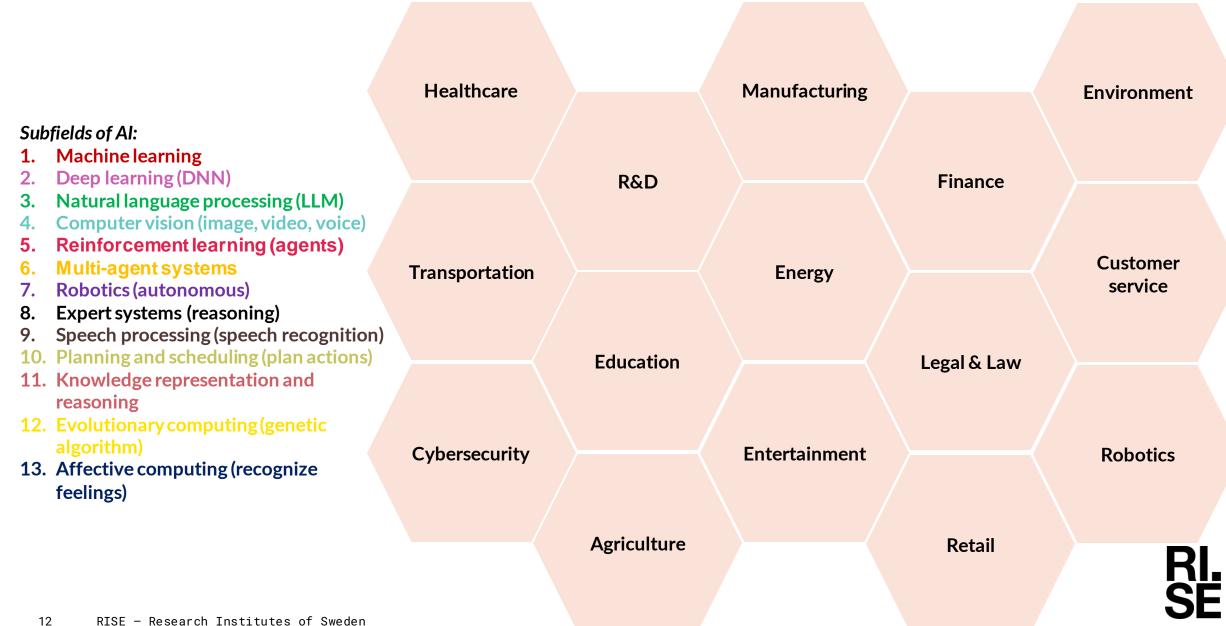
Al testing methodology



The AI Testing Elephant

Assessment list of Trustworthy AI (ALTAI)

Ethics



AI Testing Standards

Classificat ion and evaluation	Al Software quality	Security, trustwort hiness, privacy	Safety	Data quality & bias	Robustne ss and reliability	Ethical and societal concerns	Managem ent & Lifecycle	Risk managem ent	
ISO/IEC 29119 series	ISO/IEC 23053	ISO/IEC 22989	ISO/IEC 22989	ISO/IEC 5259	ISO/IEC 27001	ISO/IEC 24368	ISO/IEC 42001	ISO/IEC 23894	
ISO/IEC 4213	ISO/IEC 24028	ISO/IEC 20547	ISO/IEC 5469	ISO/IEC 24027	ISO/IEC 24029		ISO/IEC 42006	ISO/IEC 31000	
ISO/IEC 25059	ISO/IEC 25000	ISO/IEC 24028					ISO/IEC 38507		
ISO/IEC 42102							ISO/IEC 5338		
Functional		Non-functional							

Application domains and subfields of Al

Performing AI Testing

Performing AI Explainability Testing

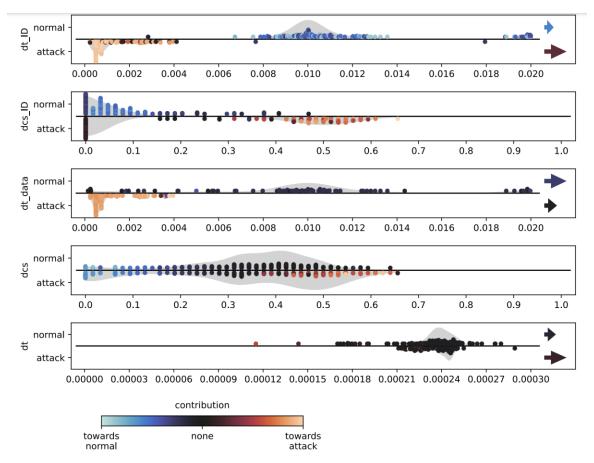
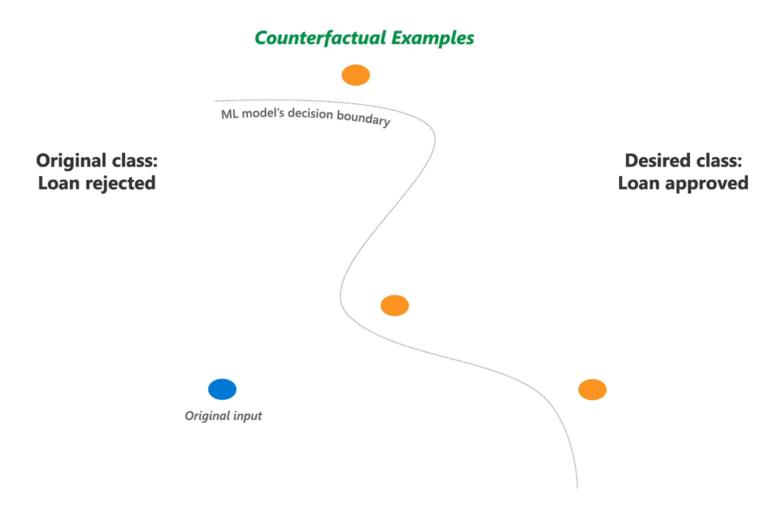


FIGURE 2. VisExp | A pseudo-global visualization-based explanation, using SHAP values. It shows the features in the dataset in swarm plot-like strips for normal and attack classifications. Each point is an instance from the train data. The x-axes are the feature values, and the color represents the SHAP values. The color of the arrows represent the mean of the SHAP values outside of the diagram, and their relative size represents how many data points there are.

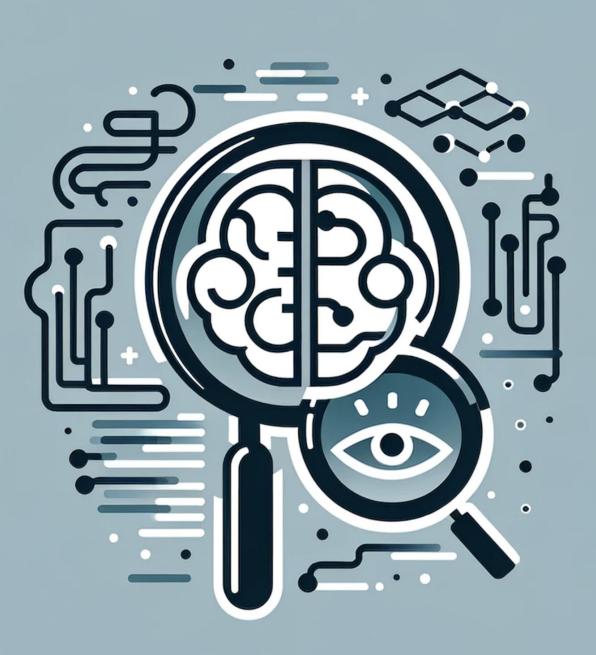
Hampus Lundberg, Nishat I Mowla, Sarder Fakhrul Abedin, Kyi Thar, Aamir Mahmood, Mikael Gidlund, Shahid Raza, "Experimental Analysis of Trustworthy In-Vehicle Intrusion Detection System Using eXplainable Artificial Intelligence (XAI)," IEEE Access, vol. 10, September 2022. (Link)

	Arbitration		Control		ntrol	Data	Data C		l A	ACK		
S O F	ID	R T R	I D E	R B 0	DLC	Data	CRC	CRC Del	A C K	ACK Del	E O F	I F S
	Race: 11 hite				4 hite	0-64 hits	•					

FIGURE 1. CAN frame | The Survival dataset has features of the ID, DLC and data field, along with the timestamp of when a CAN frame is transmitted.


TABLE 1. DNN hyperparameters | Parameters and their values as specified when building the DNN in keras.

Layer	# of units	Description
layer_1	11	keras.layers.Dense
layer_2	23	keras.layers.Dense
layer_3	7	keras.layers.Dense
Hyperparameter	Value	
optimizer	"adam"	Optimizer algorithm
batch_size	200	# of samples in a
epochs	20	gradient descent # of training passes over the dataset


TABLE 2. The engineered features.

Feature	Description		
dt [12]	Transmission time (s) between CAN frames		
dt_ID [12]	Transmission time (s) between CAN frames		
	with the same ID		
dt_data	Transmission time (s) between CAN frames		
	with the same data field		
dcs	Data change score (ratio) between CAN frames		
dcs_ID	Data change score (ratio) between CAN frames		
	with the same ID		

Performing AI Explainability Testing

Quality of Al

Quality Al requires quality data

But quality Al is more than data

- Cybersecurity
- Transparency
- Robustness
- more

Thanks!

kateryna.mishchenko@ri.se nishat.mowla@ri.se

