
CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 1 (44)

Report type Deliverable D2.2

Report name Principles for Resilient Vehicles and smart repairs

Dissemination level Public

Status Final

Version number 1.0

Date of preparation 2023-12-19

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 2 (44)

Authors and Contributors

Editor E-mail

Tomas Olovsson

Contributors

Thomas Rosenstatter
Kim Strandberg

tomas.olovsson@chalmers.se

E-mail

tomas.rosenstatter@chalmers.se
kim.strandberg@volvocars.com

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 3 (44)

The CyReV Consortium

Assured

Chalmers

Combitech

RISE

Volvo Car Corporation

Volvo Technology

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 4 (44)

Revision chart and history log

Version Date Reason

0.1 2021-12-15 First draft of report

0.3 2022-01-24 Draft phase 1

0.5 2023-12-05 First draft phase 2

1.0 2023-12-19 Public version

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 5 (44)

Table of contents

Authors and Contributors 2

Revision chart and history log 4

Table of contents 5

List of Abbreviations 6

1 Introduction 7

1.1 Scope and Purpose 8

1.2 Limitations 8

2 Resilient Vehicle Design 10

2.1 Safe states 11

2.2 How many safe states should we aim for? 12

2.3 Security and Safety interplay with respect to safe states 13

2.4 Should the driver be allowed to make some choices? 14

3 A Framework for Resilient Design – Techniques identified 15

3.1 “REMIND - A Framework for the Resilient Design of Automotive Systems” [7] 15

4 A framework with resilience techniques 19

4.1 “Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats” [9] 19

5 Risk assessment and Standardization 22

5.1 “Proposing HEAVENS 2.0 – an automotive risk assessment model” [27] 23

5.2 Gap analysis of ISO/SAE 21434 – Improving the automotive cybersecurity engineering life
cycle” [31] 25

6 Attacks and Attack Detection 26

6.1 Published book chapter: “Security of In-Vehicle Communication Systems” [10] 26

6.2 “Spectra: Detecting Attacks on In-Vehicle Networks through Spectral Analysis of CAN-
Message Payloads” [12] 27

7 Secure software updates and reference architectures 29

7.1 Secure Vehicle Software Updates: Requirements for a Reference Architecture [32] 29

7.2 UniSUF: a unified software update framework for vehicles utilizing isolation techniques and
trusted execution environments [26] 32

8 Endurance, verification and validation 35

8.1 V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework for Automotive
Systems [8] 35

9 Performance of communication 39

9.1 Self-stabilizing Byzantine-Tolerant Recycling [30] 39

9.2 Self-stabilizing Byzantine Fault-Tolerant Repeated Reliable Broadcast [29] 40

9.3 Brief Announcement: Self-stabilizing Total-Order Broadcast [28] 41

10 References 42

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 6 (44)

List of Abbreviations

C-ITS Cooperative Intelligent Transport Systems
CAN Controller Area Network

CAN-FD CAN with Flexible Data-Rate

ECU Electronic Control Unit

HARA Hazard analysis and Risk Assessment
IDS Intrusion Detection System

IPS Intrusion Prevention System

OEM Original Equipment Manufacturer

SIEM Security Information and Event Management

SOC Security Operations Center

TARA Threat Analysis and Risk Assessment (security)
V2V Vehicle to vehicle communication

V2X Vehicle to everything communication

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 7 (44)

1 Introduction

This work package report is part of the deliverable “D2 Development of resilient automotive
systems” and contains a detailed analysis of different resilience techniques and tools available when
designing for resilience. Some of these techniques are traditional safety mechanisms which have
been used for many years, such as the use of redundant components whereas others are more
directed towards cyber-attacks and how to detect and react to malicious activities in vehicles. Some
techniques focus on anomaly detection, others on how to always maintain a safe state and
guarantee passenger safety, and some focus on long-term resilience in vehicles.

The work in this work package has led to a Ph.D. thesis by Thomas Rosenstatter with the title “On the
Secure and Resilient Design of Connected Vehicles: Methods and Guidelines” [3] and to articles
published at conferences and in journals: [5][7][8][9][10]. Input from other work packages has also
contributed to the Ph.D. thesis, although the main work has taken place here.

It has also led to a Licentiate thesis by Kim Strandberg 2022 “Towards a Secure and Resilient Vehicle
Design: Methodologies, Principles and Guidelines” [5], and a Ph.D. thesis to be defended by him early
2024. It has also led to articles published in conferences and journals: [7][9][26][32][33][34].

CyRev has also partly funded Aljoscha Lautenbach towards his Ph.D. degree to be defended early
2024 where he has contributed with two papers: [27][31]. It has also allowed us to collaborate with
Karlsruhe Institut für Technologie (KIT) in this project.

In this deliverable, we provide a summary of the contents of the Ph.D. theses and the published
papers but do not include the full texts not to infringe copyright rights. To get a complete
understanding of the work and to get more details than outlined here, we refer to these publications
which are officially available.

The goals for this work package have been to investigate principles for building a resilient vehicle and
to identify principles suitable for detection, mitigation, recovery, and how to create endurance over
time. As a result of this work, we have gained knowledge about how to react when potential security
events are detected and what mechanisms are available to dynamically reconfigure a vehicle to
always offer the best possible service while guaranteeing the safety of its passengers. We have also
performed a systematic literature review and identified threats to resilience, categorized them, and
mapped them to their corresponding principles and protection mechanisms.

It is important to note that most techniques identified in this work are not limited to cybersecurity. In
many cases, it does not matter whether a deviation from normal behavior of a component,
subsystem, or system is due to a security problem or if the source is a software or hardware problem.
The reactions can, in many cases although not all, be the same. There may be different levels of
response, ranging from raising an alarm to be checked by the OEM to immediately enforcing stricter
firewall and gateway rules, limiting, or disabling some functionality, disconnecting the vehicle from
external communications, or even initiating a complete, safe, shutdown of the vehicle.

In the remainder of this WP, we will use the term (cyber)security when we refer to intentionally
created problems and safety when we refer to randomly occurring software and hardware problems
similar to the traditional work as defined in ISO 26262 [1], even if security problems can endanger
the safety of the vehicle.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 8 (44)

As described in work package WP1, a vehicle is a complex system with hundreds of computers and
multiple networks enabling various types of communication. We are currently transitioning to
massively parallel processor systems with thousands of processor cores offering virtualization and AI
functionality. There are also multiple ways for vehicles to communicate with the infrastructure
around them, for instance USB, Bluetooth and WLAN enable communication to passengers. We have
V2X communication to nearby vehicles and road-side objects, and cellular communication to the
Internet and cloud-based services. In addition, cameras, radar and other sensors and devices that
receive information from the surroundings which also may be faulty, manipulated or made to mis-
interpret their input. This makes a vehicle a very complicated system to protect. A systematic
approach to both identifying possible threats, failure modes, and how to react to threats is necessary
but far from trivial to perform.

1.1 Scope and Purpose

Automated driving functions make decisions based on input from sensors and external
communication. Many services are based on machine learning techniques since traditional
programming becomes too complicated, and it is impossible to foresee all possible types of situations
in advance and how to react to all possible types of input. From a resilience perspective and when
facing intelligent attack scenarios, it can be hard to identify the real source of a detected problem
and consequently know what principles we should rely on for dynamic reconfiguration of vehicle
functions.

The first step in this direction is to define safe modes or safe states for operating a vehicle. This work
has traditionally been part of a safety HARA (hazard and risk analysis) process where the last option
is either to enter a “limp home mode” or to completely disable a vehicle. A more fine-grained
approach is desirable where functionality is gradually downgraded based on failing sensors,
components, or subsystems while always maintaining a safe state of the vehicle. When dealing with
cybersecurity issues, it is not obvious that we can reuse the same safe states as those identified in
the HARA process. The real source of a problem may be unknown or at least cannot be identified
with certainty, thus a state that is identified as safe from a safety perspective may be vulnerable from
a security point of view.

In addition, how to react to a problem may differ between safety and security. For example, if a
compromised ECU starts transmitting faked speed messages and a monitoring IDS system detects
incorrect speed messages on the network, it is not the right action to restart the ECU responsible for
transmitting the correct speed messages. Instead, a more complicated process to identify the real
source of the problem is needed.

In this work package, we have also looked at IDS systems and how to react when problems are
detected, especially since it may be hard for a vehicle to correctly assess its own state and know
whether it is functioning well when compromised. We have therefore worked with “reputation
systems” where all vehicles report their view of how other vehicles behave and if they seem to
function as intended. Such reports can be sent for cloud analysis and if a specific vehicle gets many
complaints, a deeper investigation of its functionality is warranted.

1.2 Limitations

More work is needed related to the definition of cyber-secure safe states. As an example, we have
not performed a complete analysis of how to identify such states but merely identified the need for
such work.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 9 (44)

Another challenge requiring more work is to identify on what system levels reconfiguration can and
should be done: system level, network level or architecture (layers) and how to obtain defense in
depth. To do this, it is necessary to identify failure modes to get a deeper understanding of how
every system and subsystem are related to each other and in which ways they depend on each
other’s services, and then map failure modes to mitigation techniques.

Much of the work reported in this WP is connected to work done in other work packages.
Collaboration between work packages has been a key factor in dealing with such complex problems,
and many of the concepts described here are further explored in other work packages as well.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 10 (44)

2 Resilient Vehicle Design

In the CyReV project, we have defined resilience as:

Property of a system with the ability to maintain its intended operation in a dependable and
secure way, possibly with degraded functionality, in the presence of faults and attacks.

There is also a note to this definition: Dependable and secure refer to attributes such as safety,
confidentiality, integrity, privacy and maintainability."

We believe this definition clearly shows what is meant by resilience and gives a clear view of why
obtaining resilience is important. In this context, “dependable and secure way” means that we must
address safety and security. Security is often referred to as focusing on the three fundamental
attributes, i.e., confidentiality, integrity, and availability, whereas dependability is “the ability to
avoid service failures that are more frequent and more severe than acceptable” [13]. Therefore,
dependability not only includes safety but also other attributes, i.e., availability, reliability, integrity,
and maintainability, see the picture below. Laprie [14] further elaborates on the need for ubiquitous
systems to maintain dependability despite continuous change, which leads to a similar definition of
resilience, namely “the persistence of dependability when facing changes.”

There are also other aspects that are needed for long-term endurance, such as forensics, which is
also addressed in this project. The relationship between resilience, security, dependability, and safety
can be illustrated as [15]:

The authors differentiate between resilience and scalable resilience, to highlight that changes, such
as technological, functional and environmental, occur over time and thus require the system to be
capable of evolving. This emphasis on long-term needs is very important in the automotive domain
where vehicles are expected to be operated for several years or even decades.

Due to the relationship between safety, security and resilience, we refer to security when referring to
techniques that directly support one of the security attributes. With resilience, we mean techniques
that support both dependability (safety) and security.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 11 (44)

There are many reasons why resilience is important, for instance:

 First and most important, we need to guarantee the safety of passengers and other vehicles
due to software, hardware, and security problems. The problems may be security-related but
can also result from a hardware or a software problem (“bugs”).

 To make vehicles survive and continue to function, possibly with degraded functionality, when
a problem is detected. It may take some time until the problem can be diagnosed by the OEM
and before a necessary software update is available. Depending on the result of this analysis,
other vehicles may be instructed to reconfigure themselves to prevent this problem from
occurring.

 To prevent massive denial of service attacks (DoS) against fleets of vehicles. An attacker who
can remotely trigger “limp home mode” or to totally disable vehicles may spawn fleet-wide
attacks. Vehicles should be able to reconfigure themselves to survive such attacks without
external help.

Many of the services in a vehicle rely on reliable and secure communication and on receiving correct
data from sensors and cameras: platooning, virtual traffic lights, and lane changing. In fact, most
automated driving functions rely on communication. Therefore, many of the resilience techniques
identified in our work focus on communication, networks and the (network) architecture of the
vehicle. A current trend in the automotive industry is to move functionality from individual,
distributed ECUs to more centralized and powerful multi-processor systems. Still, communication
between physical and virtual ECUs are key components in obtaining a safe and secure vehicle.

In this work package, we have investigated how a resilient vehicle system can be built based on the
reference architecture from Task 2.1. We have identified components necessary to be able to
understand and to enable future simulations of security problems to study possible actions and limit
the potential impact. We have also investigated possible ways to react when security problems are
detected, and based on functionality, created a usable structure of available methods. In this work
package, we have systematically identified the threats to resilience and mapped them to the
principles and mechanisms for detection, mitigation, recovery, and endurance.

2.1 Safe states

Resilience is how to guarantee that a vehicle is always in a safe (and secure) state or mode. For
example, it may be fully functional, partly functional, or disabled. The identification of safe states is a
very complex task and depends largely on the actual design of the vehicle. Therefore, it has not been
possible to define specific safe states in this project, nor to answer the question exactly of how many
states there should be. Safe states have been defined by ISO, mainly with respect to “traditional
safety” without considering security, although the definitions still apply in our broader context:

ISO 26262: “[Safe state is an] operating mode (3.102), in case of a failure (3.50), of an item (3.84)
without an unreasonable level of risk (3.128). Note 1 to entry: See Figure 5. Note 2 to entry: While
normal operation can be considered safe, the definition of safe state is only in the case of failure (3.50)
in the context of the ISO 26262 series of standards.” [1]

ISO/TR 4804: “[Safe state is an] operating mode that is reasonably safe. Note 1 to entry: The safe
state is the state in which both fail-safe (3.18) and fail-degraded (3.16) systems will provide a solution
(technically provided by an alternative functionality) to avoid risk, in an acceptable criterion, to any
road user (3.46).” [2]

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 12 (44)

A safe state can be achieved by performing different actions, e.g., to restart an ECU or a subsystem,
to reconfigure functionality into a degraded state or to disable one or more services completely. In
our REMIND paper (see chapter 3.1), a set of techniques and solutions relevant for the automotive
domain are identified, such as reinitialization, reparameterization, relocation/migration, isolation,
and software rejuvenation. The main idea is to have a vehicle able to reconfigure itself to achieve
graceful degradation when needed.

2.2 How many safe states should we aim for?

The process of defining safe states of a vehicle is complex. It must begin with identifying possible
failure modes of the system, which can partly be the result of a Threat Analysis and Risk Assessment
process, TARA. It is a complex task, and it is far from obvious whether we should aim for 10 or 100
different states. The number of states is not necessarily the same as clearly identified working
modes, but if all deviations from a fully (completely) functional vehicle should be counted as a
different state, such as a broken taillight or a non-functioning non-essential ECU, then the number of
combinations and the number of states will be huge. It does not mean that we should not care about
such deviations, but counting all possible safe states and combinations of deviations is not
meaningful since many deviations may not relate to each other, and the impact of deviations can
vary vastly.

A more reasonable approach is to focus on different levels when defining safe states. A subsystem
may have several safe states which guarantee that its output is trustworthy to its surroundings, but it
may also be allowed to produce data of lower quality and notify the surrounding about this.
Depending on the quality of data received, some other higher-level functions may have to reduce
their functionality or use other sensors or subsystems to double-check or receive more accurate
information. Counting the number of possible safe states is therefore complex and may not even be
meaningful. However, the functionality of each subsystem must be analyzed in detail in the
HARA/TARA processes to make sure the service they deliver is correct and trustworthy, and if it
offers limited service, other modules depending on this service should be aware of this and may in
turn reduce the service they offer.

For example, if a system receives contradicting input where the reported speed differs between its
own sensors and the reported GPS speed, some high-level functions like engaging automatic parking
functionality, may have to be disabled until the correct speed can be determined. This discrepancy
may also be detected by a network IDS/IPS system which may initiate some internal actions to
correct the problem.

There are many issues to consider when safe states are to be identified, for example:

 Do we have similar safe states in safety and security?

 In what way will the transition to more centralized architectures change the scene?

 Safety and security interplay is important: the definition of safe states must be done together
regardless of whether we have the same states or not. Security enhancing actions should not
be allowed to affect safety in a negative way, and vice versa.

 Standards for safety and security must also be more aligned to allow safety and security design
at the same time.

A reference architecture is important when reasoning around these questions where examples of
actions and consequences can be analyzed in a limited, simplified environment.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 13 (44)

2.3 Security and Safety interplay with respect to safe states

As mentioned above, it is important to investigate the safety and security interplay, since safety and
security mechanisms may interfere with each other and cause problems to the other domain,
something which is further investigated in work package 3.3. The picture below by Sangchoolie et.al.
[20] shows examples of different security mechanisms, threats they address according to the STRIDE
methodology [18], and which dependability attribute (safety and security) they may affect (see WP
3.3 for more details). Creating tables like this is useful when analyzing and choosing mechanisms to
be used to achieve resilience and whether closer collaboration is needed between engineers in the
two fields.

An example of non-desired interaction is the use of redundant ECUs where a typical dependability
mechanism may compromise security. Consider a vehicle which has two redundant ECUs responsible
for reporting the vehicle speed. One ECU is always active and the other passive. If the active ECU
stops transmitting messages, the other ECU becomes active and takes over. Then, if the first ECU is
restarted and becomes functional again, it remains passive and waits for the other to fail. However, if
a third ECU in the vehicle is compromised and starts transmitting incorrect (i.e. faked) speed
messages, both legitimate ECUs may believe that the other is active and will refrain from
transmitting, leaving only faked messages on the bus. If no redundancy was used at all for speed
messages, there would have been conflicting messages on the bus, correct information would be
mixed with incorrect information, and receiving nodes would easily detect that something was wrong
since speed varies too quickly – for example, every 10ms speed jumps between 50 and 100 km/h.

Similarly, when defining safe states, it may be that some states which are perfectly fine from a safety
perspective are less optimal from a security perspective. An attacker may have to take several
actions or steps to move the system into such a “safe” state, a state that is less optimal from a
security perspective and from which is possible to spawn a certain attack. An example could be to
fake speed and some other messages to convince the vehicle it is safe to enter automatic parking
when it is actually travelling at high speed on a highway.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 14 (44)

2.4 Should the driver be allowed to make some choices?

Another issue related to safe states is if the driver should be allowed to override some alarms, e.g.
decide that it is a false alarm, and that the vehicle should not go into “limp home” mode. If we allow
driver intervention, it can affect how the vehicle behaves and what safe states it enters. It may be
that the vehicle requires assistance to decide whether a function works or not, or it may ask the
driver whether some functions should be disabled or not. It may also be possible to allow the vehicle
to ask the driver about which sensor value is correct if there is a conflict. This question was raised
during the project, but since user actions and behavior are outside the scope of this project, we
decided not to investigate it further.

Another related issue is controllability, i.e. how the driver will handle the situation if a vehicle enters
a new safe state and needs to immediately shut down some functions. Some mitigation and recovery
mechanisms may require an immediate takeover by the driver before they can be executed.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 15 (44)

3 A Framework for Resilient Design – Techniques identified

We have investigated the principles for how to respond when suspected security problems are
detected. The goal has been to systematically identify the threats to vehicles and map them to
principles and mechanisms. This is useful and can guide designers to make an informed and optimal
selection of resilience techniques to be used in an automotive system.

3.1 “REMIND - A Framework for the Resilient Design of Automotive Systems” [7]

Paper presented at IEEE Secure Development (SecDev), Atlanta, GA, USA, 2020

Authors: T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, and T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

This work has led to the REMIND framework [7] comprising four strategies: detection, mitigation
(analyze and respond), recovery and endurance. This work required us to perform a structured
analysis of resilience techniques found in the literature, where 200 of the most relevant publications
indexed by Scopus were selected. As shown in the figure below, we have also created a structure
with different “patterns”, i.e. more detailed descriptions for how the strategies can be realized:

We can see that some patterns overlap two strategies, for example redundancy which can be a tool
both to detect deviating output by using multiple systems, ECUs, or sensors, but also to mitigate
threats by immediately restarting failing components.

The patterns were then further divided into different techniques that can be used to implement a
certain strategy, as shown in the figure below. It also shows what type of asset is addressed,
hardware, software, network communication or data storage. For each technique, one or several
important papers are referenced to allow the reader to further investigate the concept:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 16 (44)

In the figure, we can see that the Mitigation strategy overlaps with Recovery and Detection and that
some techniques and solutions are applicable to both. Appendix B of the REMIND paper contains
more details and explanations, for example, it discusses Detection strategies in some detail. A short
extract from the paper is shown here:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 17 (44)

Resilience of automotive systems is required to cope with diverse and newly emerging attacks that
make use of the advances in communication and functionality. Automotive systems need to maintain
the intended functionality, even if degraded, to ensure the safety of the passengers and the
surrounding environment. Research in identifying and categorizing resilience techniques has been
performed in areas such as cloud computing [16], fog computing [17] and cyber-physical systems[15].
In this work, we review and analyze scientific literature on resilience techniques, fault tolerance, and
dependability. As a result, we present the REMIND resilience framework supporting the design of
resilient vehicles by (i) identifying techniques for attack detection, mitigation, recovery and resilience
endurance; (ii) organizing these techniques into a taxonomy to guide designers in choosing the
needed technique for the task at hand; (iii) providing guidelines describing how the proposed
taxonomy can be applied against common security threats; and (iv) discussing the trade-os when
implementing techniques identified in REMIND.

EXTRACT FROM PUBLICATION

Abstract — In the past years, great effort has been spent on enhancing the security and safety of
vehicular systems. Current advances in information and communication technology have increased
the complexity of these systems and lead to extended functionalities towards self-driving and more
connectivity. Unfortunately, these advances open the door for diverse and newly emerging attacks
that hamper the security and, thus, the safety of vehicular systems. In this paper, we contribute to
supporting the design of resilient automotive systems. We review and analyze scientific literature on
resilience techniques, fault tolerance, and dependability. As a result, we present the REMIND
resilience framework providing techniques for attack detection, mitigation, recovery, and resilience
endurance. Moreover, we provide guidelines on how the REMIND framework can be used against
common security threats and attacks and further discuss the trade-offs when applying these
guidelines.

CONCLUSION – The reviewed work shows the current research efforts towards making systems
resilient to attacks and faults in related domains. We present a novel structure for categorizing
resilience techniques in the form of the REMIND framework with the aim to lead designers in making
informed decisions when choosing resilience techniques. We build upon the existing work and set
the focus on the limitations of automotive systems and their challenges. The REMIND techniques
have been chosen considering automotive assets and related attacks which are described in Section
III and further linked to the guidelines and trade-off analysis in Appendix A.

Future work includes the validation of the REMIND framework in regard to studying its applicability
in industry in more depth. Furthermore, specific solutions for the identified techniques that consider
the unique properties of automotive vehicles can be explored. Especially, the role of software-
defined networking and its contribution to resilience can be investigated.

Appendix A of this paper contains a detailed 5-page long listing of resilience techniques including
trade-offs when implementing a specific technique. An example from the Appendix is shown here
which describes fabrication/jamming of network traffic:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 18 (44)

Similar tables exist for other types of attacks against the identified asses. For more information,
please see the published paper.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 19 (44)

4 A framework with resilience techniques

To create a structure of resilience techniques found in the literature and see to what extent they
could have prevented known attacks, we have systematically reviewed disclosed attacks targeting
vehicles published between 2010 and 2020 and identified what assets were targeted, what security
properties were violated and from that we have identified appropriate security and resilience
mechanisms that can be useful to mitigate these attacks. Out of a total of 52 unique attacks, 37 high
and critical risk attacks were identified.

Focusing on the type of asset being the target for the attack, communication has been attacked most
often (29) followed by software (17), sensors (10) and data storage (2). When looking further into
attacks towards the communication, we can see that most of the attacks were targeting externally
available interfaces (23) if considering interfaces inside the vehicle such as OBD-II as external. By
considering only wireless communication, e.g., Bluetooth, key fobs, Wi-Fi and cellular
communication, the number of distinct attacks are reduced to 12.

The software asset was most often attacked when it was running (10) followed by attacks when at
rest (7) which exploited the software update functionality, weak crypto systems being used or the
software state. Attacks towards sensors respectively the hardware, center around showing
insecurities in GNSS. However, interesting attacks (5) that target other vehicle sensors, such as the
camera, lidar and ultrasonic, have also been published. Most of the attacks on sensors require cyber
resilience to withstand attacks such as camera blinding and sensor spoofing. Attacking the data
storage seemed to be far less attractive for attackers. However, two attacks have extracted
certificates or stolen personal information from replaced spare parts.

We can also see that in 2016 most attacks (15) were published and 7 to 9 attacks per year in the
years following. The assets which have been targeted do not show any trends, yet novel attacks on
the CAN bus are ceasing.

4.1 “Resilient Shield: Reinforcing the Resilience of Vehicles Against Security
Threats” [9]

Paper presented at IEEE 93th Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland

Authors: K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, and T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

The next step was to develop a threat model by identifying vital vehicle assets that were targeted by
these attacks where assets, potential threat actors, and the STRIDE categories for each attack were
listed. They were then further mapped to appropriate security and resilience techniques. The
security and resilience techniques found in the REMIND framework (chapter 3.1 above) was used and
was extended with 7 more categories found useful when categorizing these attacks:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 20 (44)

Existing work on securing vehicles focuses on providing frameworks that help designers and
developers identify the necessary mechanisms to mitigate various attack scenarios. Microsoft STRIDE
[18], for instance, provides a tool for threat modelling. HEAVENS [19] supports developers in defining
security objectives based on their proposed TARA. Other works such as Sommer et al. [21], focus on a
taxonomy for attacks against automotive systems. This chapter combines security and resilience
techniques needed in automotive systems in one framework. For the proposed framework, we apply
the SPMT methodology on systematically identified attacks to derive security guidelines and detailed
directives focusing on security and resilience. We further map the potential threat actors to the
assets exposed by each attack and show which security and resilience techniques can be deployed to
mitigate them. The resulting framework, named Resilient Shield, builds the base for designing secure
and resilient systems, yet allows them to be easily extended in the presence of novel attacks.

EXTRACT FROM PUBLICATION

Abstract — Vehicles have become complex computer systems with multiple communication
interfaces. In the future, vehicles will have even more connections to e.g., infrastructure, pedestrian
smartphones, cloud, road-side units, and the Internet. External and physical interfaces, as well as
internal communication buses have shown to have potential to be exploited for attack purposes. As a
consequence, there is an increase in regulations which demand compliance with vehicle cyber
resilience requirements. However, there is currently no clear guidance on how to comply with these
regulations from a technical perspective.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 21 (44)

To address this issue, we have performed a comprehensive threat and risk analysis based on
published attacks against vehicles from the past 10 years, from which we further derive necessary
security and resilience techniques. The work is done using the SPMT methodology where we identify
vital vehicle assets, threat actors, their motivations and objectives, and develop a comprehensive
threat model. Moreover, we develop a comprehensive attack model by analyzing the identified
threats and attacks. These attacks are filtered and categorized based on attack type, probability, and
consequence criteria. Additionally, we perform an exhaustive mapping between asset, attack, threat
actor, threat category, and required mitigation mechanism for each attack, resulting in a
presentation of a secure and resilient vehicle design. Ultimately, we present the Resilient Shield, a
novel and imperative framework to justify and ensure security and resilience within the automotive
domain.

CONCLUSION -- We have performed a comprehensive threat and risk analysis of published attacks
against vehicles and derived imperative security and resilience mechanisms by applying the SPMT
methodology. A threat model with vital vehicle assets and related potential threat actors, their
motivations, and objectives, was developed. By an extensive analysis of threats and attacks, further
filtered and categorized based on attack type, probability and consequence criteria, an attack model
was developed based on the remaining high-risk attacks. Based on the developed models, a
comprehensive mapping between asset, attack, threat actor, threat category, and defense
mechanisms was performed for all attacks and is presented in Table I. Table I summarizes the
outcomes by applying SPMT, i.e. the Resilient Shield, a novel framework both justifying and defining
imperative security and resilient mechanisms needed in a modern vehicle. Consequently, the
Resilient Shield can be used as a vital baseline for protection against common security threats and
attacks.

We believe our work is imperative for facilitating and guiding the design of resilient automotive
systems; however, it still remains to be seen how large the coverage is in relation to future attacks.
Moreover, testing and validation of the Resilient Shield within an industrial context is left as a future
work.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 22 (44)

5 Risk assessment and Standardization

Standardization of security work in the vehicular domain is important, and in an earlier project,
HEAVENS, we developed a framework for a future standard with respect to risk assessment with a
focus on cybersecurity. The major goal with this project was to develop a threat and risk assessment
method which addresses security which is aligned with established functional safety standards for
road vehicles (ISO 26262). This led to the HEAVENS security model which is used in the automotive
industry today and it has heavily influenced the SAE J3061 and ISO/SAE 21434 standards which, as of
2023, are used by the industry to reach type approval.

The picture below shows projects and work which has influenced the ISO/SAE 21434 standard and
shows the role of the HEAVENS model [25]:

Since the ISO/SAE 21434 standard introduces additional requirements which were not present in
HEAVENS for the risk assessment process, the HEAVENS standard needs to be updated. We have
therefore in this project updated the requirements to become HEAVENS 2.0 to facilitate for those
who currently use it in practice. HEAVENS 2.0 works as a drop-in threat analysis and risk assessment
(TARA) model for ISO/SAE 21434. Practitioners who are already familiar with HEAVENS 1.0 will be
able to learn this model easily and therefore be one step closer to applying ISO/SAE 21434. Finally,
with minor parameter calibrations, HEAVENS 2.0 can also be applied to similar industries, such as
medical devices or industrial systems.

This update aligns terminology, it merges threat analysis and risk assessment phases and includes
damage scenario identification. It further adjusts the threat levels to meet the requirements in the
ISO standard to require a specific number and names for the attack feasibility rating. Finally, a change
is that HEAVENS 2.0 focuses on the road user as the primary stakeholder and no longer on the OEM
perspective which affects the impact rating of vulnerabilities and threats. All in all, 12 updates to the
HEAVENS 1.0 framework/standard were introduced.

ISO/SAE 21434 has quickly been established in the industry. However, at least two significant
challenges remain. In terms of the management of TARA throughout the life cycle and the supply
chain, as well as in the response to vulnerabilities and incidents, the standard should be improved

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 23 (44)

and extended. We have therefore performed a methodological gap analysis to identify and discuss
challenges and issues, based on which we propose two major improvements to ISO/SAE 21434 that
could be incorporated in future versions of the standard: A novel management process for TARA to
improve risk management over the life cycle and supply chain; and a revised process for identifying
and responding to vulnerabilities and attacks that is better aligned with established processes and
more practically feasible.

5.1 “Proposing HEAVENS 2.0 – an automotive risk assessment model” [27]

Paper presented at: ACM Computer Science in Cars Symposium, CSCS ‘21

Authors: A. Lautenbach, M. Almgren, T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

The update of HEAVENS 1.0 aligns terminology, it merges threat analysis and risk assessment phases
and includes damage scenario identification. It further adjusts the threat levels to meet the
requirements in the ISO standard to require a specific number and names for the attack feasibility
rating. Finally, a change is that HEAVENS 2.0 focuses on the road user as the primary stakeholder and
no longer on the OEM perspective which affects the impact rating of vulnerabilities and threats. All in
all, 12 updates to the HEAVENS 1.0 framework/standard were introduced.

The workflow of the HEAVENS 2.0 can be summarized as:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 24 (44)

EXTRACT FROM PUBLICATION

Abstract – Risk-based security models have seen a steady rise in popularity over the last decades,
and several security risk assessment models have been proposed for the automotive industry. The
new UN vehicle regulation 155 on cybersecurity provisions for vehicle type approval, as part of the
1958 agreement on vehicle harmonization, mandates the use of risk assessment to mitigate
cybersecurity risks and is expected to be adopted into national laws in 54 countries within 1 to 3
years. This new legislation will also apply to autonomous vehicles. The automotive cybersecurity
engineering standard ISO/SAE 21434 is seen as a way to fulfill the new UN legislation, so we can
expect quick and wide industry adoption. One risk assessment model that has gained some
popularity and is in active use in several companies is the HEAVENS model, but since ISO/SAE 21434
introduces additional requirements on the risk assessment process, the original HEAVENS model
does not fulfill the standard.

In this paper, we investigate the gap between the HEAVENS risk assessment model and ISO/SAE
21434, and we identify and propose 12 model updates to HEAVENS to close this gap. We also discuss
identified weaknesses of the HEAVENS risk assessment model and propose 5 additional model
updates to overcome them. In accordance with these 17 identified model updates, we propose
HEAVENS 2.0, a new risk assessment model based on HEAVENS which is fully compliant with ISO/SAE
21434

Conclusions – Thanks to new legislation, ISO/SAE 21434 will see widespread adoption in industry and
automotive companies need to learn how to integrate cybersecurity processes on project and
organizational level. Threat analysis and risk assessment is one of the most prominent of these
processes, and it seems especially prudent to apply Proposing HEAVENS 2.0 in autonomous driving
use cases to minimize the potential for maliciously caused safety incidents.

In order to facilitate the continued use of experiences from HEAVENS 1.0 in automotive projects, we
analyzed its gap to the risk assessment framework mandated by ISO/SAE 21434. Consequently, we
proposed 12 model updates to close this gap, and we also addressed 5 shortcomings identified for
HEAVENS 1.0. Together, these 17 model updates form the basis for HEAVENS 2.0.

HEAVENS 2.0 works as a drop-in threat analysis and risk assessment (TARA) model for ISO/SAE
21434. Practitioners who are already familiar with HEAVENS 1.0 will be able to learn this model easily
and therefore be one step closer to applying ISO/SAE 21434. Finally, with minor parameter
calibrations, HEAVENS 2.0 can also be applied to similar industries, such as medical devices or
industrial systems.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 25 (44)

5.2 Gap analysis of ISO/SAE 21434 – Improving the automotive cybersecurity
engineering life cycle” [31]

Paper presented at 2023 IEEE 26th International Conference on Intelligent Transportation Systems
(ITSC 2023)

Authors: D. Grimm, A. Lautenbach, M. Almgren, T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

Abstract – Due to the ongoing legislative shift towards mandated cybersecurity for road vehicles, the
automotive cybersecurity engineering standard ISO/SAE 21434 is seeing fast adoption throughout
the industry. Early efforts focus on threat analysis and risk assessment (TARA) in the concept and
development phases, exposing the challenge of managing TARA results coherently throughout the
supply chain and life cycle.

While the industry focuses on TARA, other aspects such as vulnerability or incident handling are
receiving less attention. However, the increasing threat landscape makes these processes
increasingly important, posing another industry challenge.

In order to better address these two challenges, we analyze the cybersecurity engineering framework
of ISO/SAE 21434 for gaps or deficiencies regarding TARA management and vulnerability and incident
handling, as well as similar processes for incident handling in IT security. The result is a proposal for
modifications and augmentations of the ISO/SAE 21434 cybersecurity engineering framework. In
particular, we propose a TARA management process to facilitate the coordination and information
exchange between different systems and life cycle phases, and we propose improvements to the
vulnerability and incident handling processes in ISO/SAE 21434 so that they are more aligned with
established standards. This amounts to 13 new terminology definitions, 4 new process steps, 2
modified process steps and 1 entirely new process.

Conclusions – There is a need for clear structures and guidelines around automotive cybersecurity
engineering, and ISO/SAE 21434 is largely fulfilling that need. Nevertheless, there are aspects that
can and should be improved, in particular around the interaction of TARA processes and other
cybersecurity activities, such as vulnerability and incident handling. In line with this, we have
proposed a new TARA management process and improvements to the vulnerability and incident
handling processes in ISO/SAE 21434, building on existing IT standards and guidelines, as well as on
research into TARA improvements. We expect that our proposed improvements will help automotive
companies to better coordinate their cybersecurity activities, and that an adoption of the proposed
terminology will lead to improved clarity in communication. Hopefully, they can be considered in
future versions of ISO/SAE 21434.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 26 (44)

6 Attacks and Attack Detection

We have investigated some detection mechanisms for in-vehicle networks and this work is closely
related to WP5. Here we have focused on usability with respect to resilience, and particularly the
detection mechanisms described earlier. First, a Bachelor Thesis at Chalmers has resulted in a book
chapter describing in-vehicle communication and security [10].

We have also recognized a work performed at Chalmers where a new type of IDS system was
developed, and we wanted to see to what extent this method would be applicable and could be
tweaked to vehicular networks. This work resulted in SPECTRA; a system based on spectral analysis of
CAN message payloads. It has been implemented and tested in a Volvo XC 60 vehicle and the results
are very promising (see chapter 6.2).

6.1 Published book chapter: “Security of In-Vehicle Communication Systems” [10]

Chapter appearing in Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities.

Authors: D. Dubrefjord, M. Jang, H. Hadi, T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

Abstract - The automotive industry has seen remarkable growth in the use of network and
communication technology. These technologies can be vulnerable to attacks. Several examples of
confirmed attacks have been documented in academic studies, and many vehicular communications
systems have been designed without security aspects in mind. Furthermore, all the security
implications mentioned here would affect the functionality of decision support systems (DSS) of IoT
and vehicular networks. This chapter focuses on in-vehicle security and aims to categorize some
attacks in this field according to the exploited vulnerability by showing common patterns. The
conclusion suggests that an ethernet-based architecture could be a good architecture for future
vehicular systems; it enables them to meet future security needs while still allowing network
communication with outside systems.

CONCLUSIONS – The analysis of the in-vehicle communication protocols CAN, LIN, FlexRay, and
Automotive Ethernet has shown that all protocols are developed with hardly any thought of security
in mind. Some countermeasures or fixes have been listed for the different protocols, but the
simplicity of the protocols often makes it impractical or impossible to apply the fixes. The four above
mentioned protocols all lack security features for authentication, which makes it possible to, for
example, perform replay-attacks and spoof messages. This lack of security has broader implications
since vehicles are now becoming connected to the Internet. A vulnerability may be remotely
exploited allowing an attacker to control arbitrary functions of a vehicle and at will disrupt the
rightful functionality. The authors believe that a transition to automotive Ethernet is an important
step forward for securing future connected vehicles.

Ethernet is a well-researched area when it comes to security, and it makes it possible to transfer
well-known protocols and security technologies to vehicular networks. The cost of Ethernet is what
currently makes it unattractive, but the authors believe prices will go down when it becomes a more
mature and commonly used technology in our vehicles.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 27 (44)

6.2 “Spectra: Detecting Attacks on In-Vehicle Networks through Spectral Analysis of
CAN-Message Payloads” [12]

Paper presented at 36th ACM Symposium on Applied Computing, Gwangju, South Korea 2021

Authors: W. Aoudi, M. Almgren, N. Nowdehi, T. Olovsson

The complete text is available online and is not duplicated here for copyright reasons.

The problem with current in-vehicle IDS systems is their rate of false alarms. Good systems can have
a seemingly low false alarm rate, such as 10-6, but in vehicular environments this is decades away
from being useful. One false alarm per car per year means millions or tens of millions of events to
investigate every year for an OEM.

We have developed SPECTRA, which combines a high detection rate with extremely few false alarms
– much better than most other proposed solutions. The SPECTRA system has many promising
features although further testing in real environments is needed to fully see its advantages and
possible disadvantages.

Four different attack scenarios were tested: suspension attacks, fabrication attacks, masquerade
attacks and conquest attacks:

Schematics for a suspension attack (a), fabrication attack (b), masquerade attack (c), and conquest attack (d).

The conquest attack (figure d) is the hardest attack type to deal with by an IDS system. In a conquest
attack, the adversary directly conquers the target ECU by fully compromising it. The adversary is able
to reprogram the target ECU instead of having to compromise another node on the network to inject
the intended malicious payload. Unlike the other scenarios (a-c), this attack causes no changes in the
normal behavior of any of the ECUs with respect to message frequency, clock offset, or clock skew

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 28 (44)

behavior. SPECTRA was still able to detect this change of behavior and only needs a short learning
period to understand the system it should monitor.

When performing a masquerade attack, the deviation from normal behavior can be visualized as
follows:

In short, the blue vector (circle) is the result of the training phase, and all regular network traffic
should fall into this cluster of blue vectors. When under attack, the behavior changes and the traffic
will look like the red set of vectors. For a full explanation and more details about how the system
works, please see the published paper. The characteristics of SPECTRA are promising and is
specification-agnostic which makes it applicable to a wide range of vehicle models and makes it
deployable in real-world settings, something we tested in a real Volvo XC60 vehicle.

EXTRACT FROM PUBLICATION

Abstract - Nowadays, vehicles have complex in-vehicle networks that have recently been shown to
be increasingly vulnerable to cyber-attacks capable of taking control of the vehicles, thereby
threatening the safety of the passengers. Several countermeasures have been proposed in the
literature in response to the arising threats, however, hurdle requirements imposed by the industry
are hindering their adoption in practice. In this paper, we propose spectra, a data-driven anomaly-
detection mechanism that is based on spectral analysis of CAN-message payloads. Spectra does not
abide by the strict specifications predefined for every vehicle model and addresses key real-world
deployability challenges.

CONCLUSION – With the rapid increase in the number of cyberattacks on vehicles, designing
intrusion detection systems for CAN communication has become a major area of interest. This paper
has made several noteworthy contributions to the field of automotive security. First, we have
presented spectra, an efficient attack-detection mechanism that is particularly suitable for the IVN
domain. Second, we have demonstrated, through extensive experiments including performing
attacks on a 2018 Volvo XC60 test vehicle, how SPECTRA can detect stealthy attacks on IVNs. Finally,
we have shown that SPECTRA enjoys the advantage of being specification-agnostic, which makes it
applicable to a wide range of vehicle models and deployable in real-world settings.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 29 (44)

7 Secure software updates and reference architectures

Having a secure software update process is essential to be able to guarantee a fully functional and
resilient system design. Software updates should be possible to perform at any time using any type
of network connection. We have created a unified software update framework, UniSUF, which
should fulfill most demands for a versatile, flexible, and secure solution. We have also developed
requirements for secure vehicle software updates by defining an attacker model and from there
derived security requirements. The resulting framework can be used as a reference architecture to
guide when engineers and software architects design software update systems, not only for vehicles
but also for related areas such as cyber-physical systems, IoT devices and smart cities.

It is important to note that every vehicle is unique and needs to have its unique software packages.
Thus, a unique vehicle configuration, multiple software files for every ECU, many unique
cryptographic keys, and ECU-specific diagnostic requests are required. For instance, special
cryptographic keys are needed to turn off security functionality that might otherwise block the
installation process.

There are three main entities involved in the software update process: the producer, the consumer,
and the repository. The producer is responsible for producing the software. The consumer is
responsible for the download and installation process of the software, and the repository is a storage
point for software preferably located in various cloud sources, enabling both proximity and
redundancy for data in relation to the vehicle.

7.1 Secure Vehicle Software Updates: Requirements for a Reference Architecture
[32]

Paper presented at IEEE Vehicular Technology Conference VTC-2023, 979-8-3503-1114-3 (ISBN).

Authors: K. Strandberg, U. Arnljung, T. Olovsson, and D. Kengo Oka

The complete text is available online and is not duplicated here for copyright reasons.

In this paper, we have identified general requirements to ensure a secure software update process.
These requirements fulfill common security goals for cyber-secure vehicles. Moreover, we present a
reference architecture named UniSUF based on previous work. We validate the usability and security
of our reference architecture by identifying an attacker model and performing a threat assessment.
Finally, we identify mitigation mechanisms and map the specific threats to security goals and
requirements to strengthen the robustness and design of UniSUF for a broad industry acceptance
with UN Regulation No. 156 in mind.

We assume a common agenda where someone aims to manipulate the software update process or
the software itself at any entity or during communication between entities throughout the software
update process. For instance, the intent can be to recover and exploit secret signing or obtain
encryption keys used during the software update process. The latter might enable disabling firewalls
or switching ECUs into programming mode to enable update capabilities. Additionally, attackers
might want to decrypt software files to reverse engineer and gain insight into its contents affecting
the intellectual property and try to find vulnerabilities, e.g., through analysis of safety-critical
systems. Thus, the attacker’s ultimate goal is to exploit the software update system so that malicious
or unauthorized software providing additional or altered functionality reaches the in-vehicle system,
for instance, to gain and maintain remote persistence.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 30 (44)

Thirteen security requirements were identified which are mapped against 8 security goals and 21
security directives. We further use Goal Structuring Notation (GSN) to present proofs for claims in a
graphical manner to map these claims to the general requirements, as illustrated in the following
figure:

For instance, Security Goal SG1, Secure communication, is fulfilled by requirements R1 and R11.
Requirement R1 deals with infrastructure and communication: “The infrastructure, cryptographic
algorithms, and key material shall follow best security practices. For instance, communication
between backend entities shall encrypt communication and use proper authentication between
entities. The same requirements shall be considered for in-vehicle entities directly related to the
update framework.” R1 should then be reinforced by implementing the detailed directives D1
Authentication and D2 Encryption, mitigating threats P1-P6, R, and C1-C3 (not shown here in these
figures).

More details and how packet validation and cryptographic material is derived and used, can be found
in the paper.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 31 (44)

EXTRACT FROM PUBLICATION

Abstract – A modern vehicle is no longer merely a transportation vessel. It has become a complex
cyber-physical system containing over 100M lines of software code controlling various functionalities
such as safety-critical steering, brake, and engine control. The amount of code is anticipated to rise
to around 300M lines of code by 2030. Furthermore, even well-tested code will contain more than
one bug per 1000 lines of code. Thus, it can be expected that there will be around 100k bugs in a
modern vehicle and around 300k bugs in a few years, where some might have a safety-critical
impact. Automotive companies are transforming into software companies with more software
developed in-house. The ability to patch vulnerabilities hastily and securely has become vital and is a
prerequisite when securing modern cars. UN Regulation No. 156 and the ISO 24089 emphasize the
ability to update vehicle software securely.

Consequently, we focus on securing the vehicle software update process. Our contributions include
defining an attacker model and general security requirements. We further map these requirements
to common security goals and directives to ensure broad coverage. Additionally, we present UniSUF,
a secure and versatile approach to vehicle software updates. We identify entities involved during
vehicle software updates, perform a threat assessment, and map the identified threats to security
goals and requirements. The results highlight a secure framework with high industrial relevance that
can be used as a reference architecture to guide securing similar software update systems within
automotive and related areas such as cyber-physical systems, internet-of-things, and smart cities.

Conclusions – Modern vehicles are complex systems containing more than 100M lines of software
code controlling various functionality including safety-critical functions and get increasingly
vulnerable when adding connectivity. Thus, ensuring hastily and secure software updates to patch
vulnerabilities is imperative. We have introduced UniSUF, identified entities involved in the
distribution and execution during vehicle software updates, provided an attacker model, performed a
threat assessment, and elaborated on mitigation mechanisms. We have identified general security
requirements for vehicle software updates and mapped them to common security goals and
directives further visualized with the Goal Structuring Notation (GSN). The results show that UniSUF
fulfills the stated security goals and provides a secure and unified vehicle software update framework
that can serve as a detailed reference architecture. We believe our results are valuable not only for
automotive software update architects. We also see high relevance for engineers in related areas,
such as cyber-physical systems, internet-of-things, and smart cities, guiding the design of secure
software update solutions.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 32 (44)

7.2 UniSUF: a unified software update framework for vehicles utilizing isolation
techniques and trusted execution environments [26]

Paper presented at the 19th ESCAR Europe conference 2021, pp. 86-100.

Authors: K. Strandberg, D Kengo Oka, T. Olovsson

The complete text is available after registration at https://www.escar.info/history/escar-
europe/escar-europe-2021-lectures-and-program-committee.html

Considering the different existing use cases for vehicle software updates, such as over-the-air, using a
workshop computer, at factory production, or with a diagnostic update tool, each use case typically
has its own approach which causes complexity. Moreover, new use cases for software updates need
to be considered with future demands to support 3rd party component updates. Therefore, to
simplify, reduce costs, allow flexibility, and to make the update process manageable, all while
considering security aspects, we propose a unified and versatile approach to handle all
listed/mentioned use cases.

After reviewing the above-mentioned use cases, the following constraints and conditions are defined
for a unified software update framework:

 Support for online updates (software update files and/or cryptographic credentials/operations
require online access). UniSUF: A Unified Software Update Framework for Vehicles.

 Support for offline updates (software update files and cryptographic credentials/operations
are accessible offline).

 Should not rely on additional input for cryptographic keys or installation instructions, e.g., from
a diagnostic update tool (i.e., all data needed for a complete software update is securely
encapsulated into one single file and no additional input is required).

 No dependency on the data distribution model (i.e., software update files can be provided
through different means, and it does not matter how they are distributed to the vehicle).

 No dependency on software update storage location (i.e., software update files should be
independently protected regardless of where they are stored).

 Flexible and modular to support 3rd party component updates. We have taken these
constraints and conditions into consideration when designing a software update framework to
allow for a unified and versatile approach to support different use cases.

Both data handling, signing, and verification of update package contents in the backend system and
the data distribution to the vehicle is considered. The solution is rather complex although reasonably
simple to understand its main functionality and how the different components are tied together. The
figure below shows data distribution in the backend:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 33 (44)

More details and how packet validation and cryptographic material is derived and used, can be found
in the paper.

EXTRACT FROM PUBLICATION

Abstract – Today's vehicles depend more and more on software and can contain over 100M lines of
code controlling many safety-critical functions, such as steering and brakes. Increased complexity in
software inherently increases the number of bugs affecting vehicle safety-critical functions.
Consequently, software updates need to be applied regularly. Current research around vehicle
software update solutions is lacking necessary details for a versatile, unified and secure approach
that covers various update scenarios, e.g., over-the-air, with a workshop computer, at factory
production or using a diagnostic update tool. We propose UniSUF, a Unified Software Update
Framework for Vehicles, well aligned with automotive industry stakeholders. All data needed for a
complete software update is securely encapsulated into one single file. This vehicle-unique file can
be processed in multitudes of update scenarios and executed without any external connectivity since
all data is inherently secured. To the best of our knowledge, this comprehensive, versatile, and
unified approach cannot be found in previous research and is a contribution to an essential
requirement within the industry for handling the increasing complexity related to vehicle software
updates.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 34 (44)

Conclusions – UniSUF is made to accommodate various scenarios for the automotive domain by
encapsulating needed data into one single file, a Vehicle Unique Update Package (VUUP). This
vehicle-unique file can be processed within a vehicle ECU, using a workshop computer, at factory
production, with a diagnostic update tool, or in other compositions. Moreover, the complete update
process can be performed without any external communication dependencies since all files are
inherently secured. A continuous secure software update process is a prerequisite for facilitating
vehicle resilience towards cyberattacks in a rapidly changing environment. We believe our
contributions in this paper can facilitate further research in this area, towards securing the
connected car.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 35 (44)

8 Endurance, verification and validation

Detection of unwanted activities and deviation from normal behavior may be detected by regular IDS
systems. Trusted components can be used to evaluate functionality and behavior and it can make IDS
systems hard to compromise. In addition, cloud-based IDS systems may be deployed and protect
complete fleets and prevent problems from spreading. It is not obvious that a vehicle can or should
be trusted to evaluate its own state and whether it is fully functional. If it is compromised, internal
IDS systems may be failing to see the problem due to the sophistication of an attack, or the IDS
system(s) may even be compromised as well. We have therefore taken a different approach to this
problem to make sure misbehaving and compromised vehicles are detected and either fixed or
removed from traffic. The methodology is based on peer assessment of vehicles, where vehicles
assess each other after they have been interacting with each other and upload their verdicts to the
cloud. This approach makes it possible to verify vehicle behavior and detect changes over a longer
time and to follow each vehicle’s behavior. Changes do not necessarily have to do with cyber-attacks,
but the system will also react to changes in behavior due to changes in vehicle surroundings that may
call for software or hardware updates.

8.1 V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework for
Automotive Systems [8]

Paper presented at the 16th International Conference on Availability, Reliability and Security ARES
2021. New York, NY, USA.

Authors: T. Rosenstatter, T. Olovsson, and M. Almgren

The complete text is available online and is not duplicated here for copyright reasons.

Vehicles know quite a lot about each other by observing their behavior, and after interacting with
another vehicle, for example in an intersection or after having participated in a platoon, they can give
a verdict about the other vehicles by assigning them trust scores. If a vehicle misbehaves, for
example transmits a speed that is obviously wrong, a position that does not match what other
vehicles observe, or if it in any other way behaves unexpectedly or aggressively, the trust score
indicates this. There are many scenarios that can be covered by this approach:

Scenario 1 – Unauthorized firmware manipulation:

Ex.1 Manipulation of the firmware such that the owner is able to send traffic congestion
warning messages at will to reduce traffic on a desired road segment.

Ex.2 Manipulation of the firmware such that the automated vehicle drives faster than the
current speed limit. Ex.3 Manipulation of the firmware such that an attacker can disrupt
traffic by suppressing relaying of messages, spoofing warning messages or flooding the
VANET with erroneous messages.

Scenario 2 – HW/SW failures:

Ex.4 A lidar sensor or camera is experiencing a fault and the vehicle is thus not able to
perceive its environment properly.

Scenario 3 – Legitimate SW/HW updates:

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 36 (44)

Ex.5 After a legitimate firmware update, the automated vehicle drives too fast in certain road
conditions, e. g., when the road is slippery, since the vehicle perceives the current driving
conditions incorrectly.

Ex.6 A defective hardware component is replaced in an authorized workshop and causes
compatibility problems resulting in a misbehavior while driving.

Ex.7 The machine learning algorithm for identifying traffic signs has been updated and now
causes a misclassification of speed limit signs.

The figure below shows three vehicles interacting with each other where vehicle 3 assigns a trust
score for all three:

These trust scores are then uploaded to the cloud for analysis, and if many vehicles report low trust
scores for a vehicle, it should be subject to a closer investigation for example by the OEM. The
proposed system consists of four modules (or four steps) for how the analysis is done:

Vehicle trust is primarily proposed in literature to overcome the difficulty of relying on information
received via V2V communication when interacting with other automated vehicles. Related work also
identified the potential of vehicle trust in combination with intrusion detection, however, these
solutions are either focusing on collaborating with trusted vehicles and including the results in the
own vehicle’s decision-making [22] or only consider packet header information in their intrusion
detection system [23][24].

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 37 (44)

We propose an anomaly detection framework that utilizes the trust scores computed by individual
vehicles based on V2V interactions by combining them with a subsequent analysis in the cloud. The
presented V2C Anomaly Detection framework consists of four modules dividing the tasks into (i)
individual assessments of neighboring vehicles resulting in a trust score; (ii) aggregation of these
individual assessments to one trust score per vehicle; (iii) detection of anomalies or changes in the
trust score over time; (iv) further analysis using data available in the cloud to also detect similar
anomalies in a vehicle. The advantage of using trust evaluations for detecting anomalies is twofold.
First, these vehicle assessments are, unlike IDSs, performed by other vehicles and not by the system
itself, which is important because the vehicle itself may not be aware of the fault or the IDS may also
be compromised.

Second, this framework is scalable as the computational costs for observing the trust score for each
vehicle and triggering a detailed analysis only when changes in the score are detected, requires less
resources than triggering a comprehensive analysis with each newly uploaded event to the cloud. For
each module comprising this framework we define their requirements, show how the identified
threats can be detected, provide detailed discussions about suitable techniques, and propose
modifications if necessary. Furthermore, we identify attack scenarios which such a framework can
detect and discuss its applicability in a detailed discussion based on a use case.

EXTRACT FROM PUBLICATION

ABSTRACT – Vehicles have become connected in many ways. They communicate with the cloud and
will use Vehicle-to-Everything (V2X) communication to exchange warning messages and perform
cooperative actions such as platooning. Vehicles have already been attacked and will become even
more attractive targets due to their increasing connectivity, the amount of data they produce and
their importance to our society. It is therefore crucial to provide cyber security measures to prevent
and limit the impact of attacks.

As it is problematic for a vehicle to reliably assess its own state when it is compromised, we
investigate how vehicle trust can be used to identify compromised vehicles and how fleet-wide
attacks can be detected at an early stage using cloud data. In our proposed V2C Anomaly Detection
framework, peer vehicles assess each other based on their perceived behavior in traffic and V2X-
enabled interactions and upload these assessments to the cloud for analysis. This framework consists
of four modules. For each module we define functional demands, interfaces and evaluate solutions
proposed in literature allowing manufacturers and fleet owners to choose appropriate techniques.
We detail attack scenarios where this type of framework is particularly useful in detecting and
identifying potential attacks and failing software and hardware. Furthermore, we describe what basic
vehicle data the cloud analysis can be based upon.

CONCLUSION – In this paper, we present the V2C Anomaly Detection framework, which is a novel
framework combining the assessment of Vehicle-to-Vehicle communication and the perceived
quality of cooperative interactions between vehicles resulting in a trust score, with vehicle data in
the cloud. The peer evaluation of vehicle behavior allows identification of local anomalies and attacks
even when important security controls such as in-vehicle IDSs fail to detect them, for example due to
an attacker exploiting a vulnerability, an insider or a firmware upgrade causing unintended behavior.
Furthermore, the analysis of cloud data makes it possible to detect and identify patterns of
anomalies and intrusions on a wider scale such as on a fleet level. Ultimately, the advantage of the

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 38 (44)

V2C Anomaly Detection framework lies in the fact that it is designed to reduce the computational
costs in the cloud by triggering a cloud analysis once the combined trust evaluation performed by
independent vehicles shows a significant change, i. e., a changed behavior resulting in a decline of
the trust score.

We have provided scenarios focusing on persistent threats to explain the requirements for each
module of the V2C Anomaly Detection framework in terms of functionality, inputs, and outputs. We
also provide an initial identification and detailed discussions to aid in choosing or adapting
techniques for each module so that a vehicle manufacturer, fleet owner or other actor in the cloud
can select and adapt relevant techniques depending on the available data.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 39 (44)

9 Performance of communication

Reliable communication between vehicles and the infrastructure is essential for many functions. We
have studied byzantine faults (or failures) in communication where components may silently fail
without this being recognized by others. It affects for example consensus protocols and algorithms
where two or more components all need to be in a known state. It is essential in many decisions
made by communicating vehicles (V2X communication), but also inside a vehicle where decisions
need to be made in a consistent way. Secure software updates can be one special case, where all or
no ECUs should be updated to the same known state. Other examples are fault tolerant components
in the vehicle which may fail and require a, for the driver, invisible reconfiguration and reassignment
of functions between ECUs.

Fault-tolerant distributed systems are known to be hard to design and verify. High-level
communication primitives can facilitate such complex challenges. These primitives can be based on
low-level ones, e.g., the one that allows processes to send a message to only one other process at a
time. Hence, when an algorithm wishes to broadcast message m to all processes (or ECUs), it can
send m individually to every other process. But, if the sender fails during this broadcast, perhaps only
some of the processes have received m. Even in the presence of network level support for
broadcasting or multicasting, failures can cause similar inconsistencies. To simplify the design of
fault-tolerant distributed algorithms, such inconsistencies need to be avoided. Fault-tolerant
broadcasts can simplify the development of fault-tolerant distributed systems, e.g., State Machine
Replication and Set-Constrained Delivery Broadcast. The weakest variant, Reliable Broadcast, lets all
non-failing processes agree on the set of delivered messages, including all messages they have
broadcast. We aim to design a reliable broadcast that is more fault-tolerant than the current state-
of-the-art.

We have studied a well-known communication abstraction called Byzantine Reliable Broadcast (BRB).
This abstraction is central in the design and implementation of fault-tolerant distributed systems, as
many fault-tolerant distributed applications require communication with provable guarantees on
message deliveries. Our study focuses on fault-tolerant implementations for message-passing
systems that are prone to process failures, such as crashes and malicious behaviors.

9.1 Self-stabilizing Byzantine-Tolerant Recycling [30]

Paper presented at the 25th International Symposium on Stabilization, Safety, and Security of
Distributed Systems, SSS 2023, Jersey City, USA.

Authors: C. Georgiou, M. Raynal, E. Schiller

The complete text is available online and is not duplicated here for copyright reasons.

Abstract – Numerous distributed applications, such as cloud computing and distributed ledgers,
necessitate the system to invoke asynchronous consensus objects for an unbounded number of
times, where the completion of one consensus instance is followed by the invocation of another.
With only a constant number of objects available, object reuse becomes vital. We investigate the
challenge of object recycling in the presence of Byzantine processes, which can deviate from the
algorithm code in any manner. Our solution must also be self-stabilizing, as it is a powerful notion of
fault tolerance. Self-stabilizing systems can recover automatically after the occurrence of arbitrary

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 40 (44)

transient faults, in addition to tolerating communication and (Byzantine or crash) process failures,
provided the algorithm code remains intact. We provide a recycling mechanism for asynchronous
objects that enables their reuse once their task has ended, and all non-faulty processes have
retrieved the decided values. This mechanism relies on synchrony assumptions and builds on a new
self-stabilizing Byzantine-tolerant synchronous multivalued consensus algorithm, along with a novel
composition of existing techniques.

Conclusions – We have presented an SSBFT algorithm for object recycling. Our proposal can support
an unbounded sequence of SSBFT object instances. The expected stabilization time is in O(t)
synchronous rounds. We believe that this work is preparing the groundwork needed to construct
SSBFT Blockchains. As a potential avenue for future research, one could explore deterministic
recycling mechanisms, say by utilizing the Dolev and Welch approach to SSBFT clock synchronization,
to design an SSBFT SIG-index. However, their solution has exponential stabilization time, making it
unfeasible in practice.

9.2 Self-stabilizing Byzantine Fault-Tolerant Repeated Reliable Broadcast [29]

Paper published in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 206-221, 9783031210167 (ISBN).

Authors: R. Duvignau, M. Raynal, E. Schiller

The complete text is available online and is not duplicated here for copyright reasons.

Abstract – We study a well-known communication abstraction called Byzantine Reliable Broadcast
(BRB). This abstraction is central in the design and implementation of fault-tolerant distributed
systems, as many fault-tolerant distributed applications require communication with provable
guarantees on message deliveries. Our study focuses on fault-tolerant implementations for message-
passing systems that are prone to process failures, such as crashes and malicious behaviors.

At PODC 1983, Bracha and Toueg, in short, BT, solved the BRB problem. BT has optimal resilience
since it can deal with up to t < n/3 Byzantine processes, where n is the number of processes. The
present work aims at the design of an even more robust solution than BT by expanding its fault-
model with self-stabilization, a vigorous notion of fault-tolerance. In addition to tolerating Byzantine
and communication failures, self-stabilizing systems can recover after the occurrence of arbitrary
transient faults. These faults represent any violation of the assumptions according to which the
system was designed to operate (as long as the algorithm code remains intact).

We propose, to the best of our knowledge, the first self-stabilizing Byzantine fault-tolerant (SSBFT)
solution for repeated BRB (that follows BT’s specifications) in signature-free message-passing
systems. Our contribution includes a self-stabilizing variation on a BT that solves asynchronous
single-instance BRB. We also consider the problem of recycling instances of single-instance BRB. Our
SSBFT recycling for time-free systems facilitates the concurrent handling of a predefined number of
BRB invocations and, this way, can serve as the basis for SSBFT consensus.

Conclusions – To the best of our knowledge, this paper presents the first SSBFT algorithms for IRC
and repeated BRB for hybrid asynchronous/timefree systems. As in BT, the SSBFT BRB algorithm

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 41 (44)

takes several asynchronous communication rounds of O(n2) messages per instance whereas the IRC
algorithm takes O(n) messages but requires synchrony assumptions.

The two SSBFT algorithms are integrated via specified interfaces and message piggybacking. Thus,
our SSBFT repeated BRB solution increases BT’s message size only by a constant per BRB, but the
number of messages per instance stays similar. The integrated solution can run an unbounded
number of (concurrent and independent) BRB instances. The advantage is that the more
communication-intensive component, i.e., SSBFT BRB, is not associated with any synchrony
assumption. Specifically, one can run δ concurrent BRB instances, where δ is a parameter for
balancing the trade-off between fault recovery time and the number of BRB instances that can be
used (before the next δ concurrent instances can start). The above extension mitigates the effect of
the fact that, for the repeated BRB problem, muteness detectors are used and mild synchrony
assumptions are made in order to circumvent well-known impossibilities. Those additional
assumptions are required for the entire integrated solution to work. To the best of our knowledge,
there is no proposal for a weaker set of assumptions for solving the studied problem in a self-
stabilizing manner.

We hope that the proposed solutions, e.g., the proposed recycling mechanism and the hybrid
composition of time-free/asynchronous system settings, will facilitate new SSBFT building blocks.

9.3 Brief Announcement: Self-stabilizing Total-Order Broadcast [28]

Paper published in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 358-363, 9783031210167 (ISBN).

Authors: O. Lundström, M. Raynal, E. Schiller

The complete text is available online and is not duplicated here for copyright reasons.

Abstract – Our study aims at the design of an even more reliable solution. We do so through the
lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to node and
communication failures, self-stabilizing algorithms can recover after the occurrence of arbitrary
transient faults; these faults represent any violation of the assumptions according to which the
system was designed to operate (as long as the algorithm code stays intact). This work proposes the
first (to the best of our knowledge) self-stabilizing algorithm for total-order (uniform reliable)
broadcast for asynchronous message-passing systems prone to process failures and transient faults.
As we show, the proposed solution facilitates the elegant construction of self-stabilizing state-
machine replication using bounded memory.

Discussion – Our study aims at the design of an even more reliable solution. We do so through the
lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to node and
communication failures, self-stabilizing algorithms can recover after the occurrence of arbitrary
transient faults; these faults represent any violation of the assumptions according to which the
system was designed to operate (as long as the algorithm code stays intact). This work proposes the
first (to the best of our knowledge) self-stabilizing algorithm for total-order (uniform reliable)
broadcast for asynchronous message-passing systems prone to process failures and transient faults.
As we show, the proposed solution facilitates the elegant construction of self-stabilizing state-
machine replication using bounded memory.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 42 (44)

10 References

[1] ISO, “ISO 26262:2011 Road vehicles – functional safety,” International Organization for
Standardization, Standard, 2011.

[2] ISO/TR 4804:2020, Road vehicles — Safety and cybersecurity for automated driving systems —
Design, verification and validation. International Organization for Standardization, Standard, 2020.

[3] T. Rosenstatter, “On the Secure and Resilient Design of Connected Vehicles: Methods and
Guidelines”. Ph.D. thesis, Chalmers University of Technology, 2021.
https://research.chalmers.se/publication/526019

[4] K. Tuma, “Efficiency and Automation in Threat Analysis of Software Systems”. Ph.D thesis,
Gothenburg University 2021. https://research.chalmers.se/publication/520907

[5] K. Strandberg, “Towards a Secure and Resilient Vehicle Design: Methodologies, Principles and
Guidelines”, Licentiate thesis, Chalmers University of Technology,
https://research.chalmers.se/publication/529239

[6] T. Rosenstatter, C. Englund (2017) “Modelling the Level of Trust in a Cooperative Automated
Vehicle Control System”. IEEE Transactions on Intelligent Transportation Systems, 19(4) pp. 1237-
1247.

[7] T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T. Olovsson. “REMIND: A Framework for
the Resilient Design of Automotive Systems”, 2020 IEEE Secure Development (SecDev), 2020, p.
81-95

[8] T. Rosenstatter, T. Olovsson, M. Almgren, “V2C: A Trust-Based Vehicle to Cloud Anomaly
Detection Framework for Automotive Systems”, Proceedings of the 16th International Conference
on Availability, Reliability and Security (ARES 2021), 2021, p. 1-10

[9] K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi and T. Olovsson, "Resilient Shield: Reinforcing
the Resilience of Vehicles Against Security Threats," 2021 IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), 2021, pp. 1-7, doi: 10.1109/VTC2021-Spring 51267.2021.9449029.

[10] D. Dubrefjord, M. Jang, H. Hadi, T. Olovsson, “Security of In-Vehicle Communication Systems”.
Book chapter in Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities,
2021, p. 162-179, ISBN: 9781799874683

[11] M. Folkemark, V. Rydberg, “Performance Evaluation of a Hardware Security Module in Vehicles”,
Master Thesis work at Chalmers University of Technology, 2021.

[12] W. Aoudi, M. Almgren, N. Nowdehi, T. Olovsson, “Spectra: Detecting Attacks on In-Vehicle
Networks through Spectral Analysis of CAN-Message Payloads”, Proceedings of the ACM
Symposium on Applied Computing, SAC ’21, March 22–26, 2021, pp. 1588-1597, ISBN
9781450381048

[13] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Transactions on Dependable and Secure Computing, vol.
1, no. 1, pp. 11–33, 2004.

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 43 (44)

[14] J.-C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP Int. Conf. On Dependable
Systems and Networks, 2008, pp. G8–G9.

[15] D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, and E. Bartocci, “A roadmap toward the
resilient internet of things for cyber-physical systems,” IEEE Access, vol. 7, pp. 13 260–13 283,
2019.

[16] S. Hukerikar and C. Engelmann, “Resilience design patterns: A structured approach to resilience
at extreme scale,” arXiv preprint arXiv:1708.07422, 2017.

[17] V. Chang, M. Ramachandran, Y. Yao, Y.-H. Kuo, and C.-S. Li, “A resiliency framework for an
enterprise cloud,” International Journal of Information Management, vol. 36, no. 1, pp. 155 – 166,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S026840121500095X

[18] Microsoft Corporation, “The STRIDE threat model,” 2005, (Accessed: 2022-01-21). [Online].
Available: https://msdn.microsoft.com/en-us/library/ee823878.aspx

[19] M. M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson, “A risk assessment framework for
automotive embedded systems,” in Proceedings of the 2nd ACM International Workshop on
Cyber-Physical System Security - CPSS 16. Association for Computing Machinery (ACM), 2016.

[20] B. Sangchoolie, P. Folkesson, P. Kleberger and J. Vinter, "Analysis of Cybersecurity Mechanisms
with respect to Dependability and Security Attributes," 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), 2020, pp. 94-101.

[21] F. Sommer, J. Dürrwang, and R. Kriesten, “Survey and classification of automotive security
attacks,” Information, vol. 10, no. 4, 2019. [Online]. Available: https://www.mdpi.com/2078-
2489/10/4/148

[22] P. Guo, H. Kim, L. Guan, M. Zhu, and P. Liu, “VCIDS: Collaborative intrusion detection of sensor
and actuator attacks on connected vehicles,” in Security and Privacy in Communication Networks,
X. Lin, A. Ghorbani, K. Ren, S. Zhu, and A. Zhang, Eds. Cham: Springer International Publishing,
2018, pp. 377–396.

[23] T. Nandy, R. M. Noor, M. Yamani Idna Bin Idris, and S. Bhattacharyya, “TBCIDS: Trust-based
collaborative intrusion detection system for VANET,” in 2020 National Conference on Emerging
Trends on Sustainable Technology and Engineering Applications (NCETSTEA), Durgapur, India,
2020, pp. 1–5.

[24] E. A. Shams, A. Rizaner, and A. H. Ulusoy, “Trust aware support vector machine intrusion
detection and prevention system in vehicular ad hoc networks,” Computers & Security, vol. 78,
pp. 245–254, 2018.

[25] I. Loskin: “TARA+AD: Threat Analysis and Risk Assessment for Automated Driving: cybersecurity
of road vehicles”, University of Juväskylä, Finland, 2023.
https://jyx.jyu.fi/handle/123456789/87888

[26] K. Strandberg, D. Kengo Oka, T. Olovsson, ” UniSUF: A unified software update framework for
vehicles utilizing isolation techniques and trusted execution environments”, 19th ESCAR Europe
conference 2021, pp. 86-100, https://www.escar.info/history/escar-europe/escar-europe-2021-
lectures-and-program-committee.html

CyReV D2 Vinnova Dnr 2018-05013

 Vinnova Dnr 2019-03071

 The CyReV Consortium 44 (44)

[27] A. Lautenbach, M. Almgren, T. Olovsson: ” Proposing HEAVENS 2.0 – an automotive risk
assessment model”, Proceedings - Computer Science in Cars Symposium (CSCS ’21): ACM
Computer Science in Cars Symposium, 9781450391399 (ISBN)

[28] O. Lundström, M. Raynal, E. Schiller, ” Brief Announcement: Self-stabilizing Total-Order
Broadcast”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 358-363, 9783031210167
(ISBN)

[29] R. Duvignau, M. Raynal, E. Schiller, “Self-stabilizing Byzantine Fault-Tolerant Repeated Reliable
Broadcast”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 206-221, 9783031210167
(ISBN)

[30] C. Georgiou, M. Raynal, E. Schiller: “Self-stabilizing Byzantine-Tolerant Recycling”. 25th
International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2023,
Jersey City, USA.

[31] D. Grimm, A. Lautenbach, M. Almgren, T. Olovsson, ” Gap analysis of ISO/SAE 21434 – Improving
the automotive cybersecurity engineering life cycle”, 2023 IEEE 26th International Conference on
Intelligent Transportation Systems, ITSC, 2023,

[32] K. Strandberg, U. Arnljung, T. Olovsson, D. Kengo Oka, ” Secure Vehicle Software Updates:
Requirements for a Reference Architecture”, IEEE Vehicular Technology Conference VTC-2023,
979-8-3503-1114-3 (ISBN)

[33] K. Strandberg, N. Nowdehi, T. Olovsson, ”A Systematic Literature Review on Automotive Digital
Forensics: Challenges, Technical Solutions and Data Collection”, IEEE Transactions on Intelligent
Vehicles, 23798858 (eISSN) Vol. 8, pp 1350-1367

[34] K. Strandberg, U. Arnljung, and T. Olovsson. “The Automotive BlackBox: Towards a
Standardization of Automotive Digital Forensics”. In: IEEE International Workshop on Information
Forensics and Security (2023)

