
CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   1 (44) 

 

 

 

 

 

 

 

 

 
Report type       Deliverable D2.2 

Report name       Principles for Resilient Vehicles and smart repairs 

 

Dissemination level Public 

Status Final 

Version number 1.0 

Date of preparation 2023-12-19 

  



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   2 (44) 

Authors and Contributors 

Editor E-mail 

Tomas Olovsson 

 

 

 

Contributors 

Thomas Rosenstatter 
Kim Strandberg 

 

 

 

 

 

 

 

tomas.olovsson@chalmers.se 

 

 

 

E-mail 

tomas.rosenstatter@chalmers.se 
kim.strandberg@volvocars.com  
 
 

 

 

 

 

 

 

 

 

 

 



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   3 (44) 

The CyReV Consortium 
 
 
 
   

  

  
Assured   
  

  
  
  
  

  

  
Chalmers  
  
  
  
  
Combitech  
  

  

  
RISE  
  

  

  
Volvo Car Corporation  
  

  

  
Volvo Technology  
  

   



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   4 (44) 

Revision chart and history log 

Version Date Reason 

0.1 2021-12-15 First draft of report 

0.3 2022-01-24 Draft phase 1 

0.5 2023-12-05 First draft phase 2 

1.0 2023-12-19 Public version 

   

   

  



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   5 (44) 

Table of contents 

Authors and Contributors 2 

Revision chart and history log 4 

Table of contents 5 

List of Abbreviations 6 

1 Introduction 7 

1.1 Scope and Purpose 8 

1.2 Limitations 8 

2 Resilient Vehicle Design 10 

2.1 Safe states 11 

2.2 How many safe states should we aim for? 12 

2.3 Security and Safety interplay with respect to safe states 13 

2.4 Should the driver be allowed to make some choices? 14 

3 A Framework for Resilient Design – Techniques identified 15 

3.1 “REMIND - A Framework for the Resilient Design of Automotive Systems” [7] 15 

4 A framework with resilience techniques 19 

4.1 “Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats” [9] 19 

5 Risk assessment and Standardization 22 

5.1 “Proposing HEAVENS 2.0 – an automotive risk assessment model” [27] 23 

5.2 Gap analysis of ISO/SAE 21434 – Improving the automotive cybersecurity engineering life 
cycle” [31] 25 

6 Attacks and Attack Detection 26 

6.1 Published book chapter: “Security of In-Vehicle Communication Systems” [10] 26 

6.2 “Spectra: Detecting Attacks on In-Vehicle Networks through Spectral Analysis of CAN-
Message Payloads” [12] 27 

7 Secure software updates and reference architectures 29 

7.1 Secure Vehicle Software Updates: Requirements for a Reference Architecture [32] 29 

7.2 UniSUF: a unified software update framework for vehicles utilizing isolation techniques and 
trusted execution environments [26] 32 

8 Endurance, verification and validation 35 

8.1 V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework for Automotive 
Systems [8] 35 

9 Performance of communication 39 

9.1 Self-stabilizing Byzantine-Tolerant Recycling [30] 39 

9.2 Self-stabilizing Byzantine Fault-Tolerant Repeated Reliable Broadcast [29] 40 

9.3 Brief Announcement: Self-stabilizing Total-Order Broadcast [28] 41 

10 References 42 

 
 



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   6 (44) 

List of Abbreviations 

C-ITS Cooperative Intelligent Transport Systems 
CAN Controller Area Network 

CAN-FD CAN with Flexible Data-Rate 

ECU Electronic Control Unit 

HARA Hazard analysis and Risk Assessment 
IDS Intrusion Detection System 

IPS Intrusion Prevention System 

OEM Original Equipment Manufacturer 

SIEM Security Information and Event Management 

SOC Security Operations Center 

TARA Threat Analysis and Risk Assessment (security) 
V2V Vehicle to vehicle communication 

V2X Vehicle to everything communication 

 

 

  



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   7 (44) 

1 Introduction 

This work package report is part of the deliverable “D2 Development of resilient automotive 
systems” and contains a detailed analysis of different resilience techniques and tools available when 
designing for resilience. Some of these techniques are traditional safety mechanisms which have 
been used for many years, such as the use of redundant components whereas others are more 
directed towards cyber-attacks and how to detect and react to malicious activities in vehicles. Some 
techniques focus on anomaly detection, others on how to always maintain a safe state and 
guarantee passenger safety, and some focus on long-term resilience in vehicles.  

The work in this work package has led to a Ph.D. thesis by Thomas Rosenstatter with the title “On the 
Secure and Resilient Design of Connected Vehicles: Methods and Guidelines” [3] and to articles 
published at conferences and in journals: [5][7][8][9][10]. Input from other work packages has also 
contributed to the Ph.D.  thesis, although the main work has taken place here.  

It has also led to a Licentiate thesis by Kim Strandberg 2022 “Towards a Secure and Resilient Vehicle 
Design: Methodologies, Principles and Guidelines” [5], and a Ph.D. thesis to be defended by him early 
2024. It has also led to articles published in conferences and journals: [7][9][26][32][33][34]. 

CyRev has also partly funded Aljoscha Lautenbach towards his Ph.D. degree to be defended early 
2024 where he has contributed with two papers: [27][31]. It has also allowed us to collaborate with 
Karlsruhe Institut für Technologie (KIT) in this project. 

In this deliverable, we provide a summary of the contents of the Ph.D. theses and the published 
papers but do not include the full texts not to infringe copyright rights. To get a complete 
understanding of the work and to get more details than outlined here, we refer to these publications 
which are officially available. 

The goals for this work package have been to investigate principles for building a resilient vehicle and 
to identify principles suitable for detection, mitigation, recovery, and how to create endurance over 
time. As a result of this work, we have gained knowledge about how to react when potential security 
events are detected and what mechanisms are available to dynamically reconfigure a vehicle to 
always offer the best possible service while guaranteeing the safety of its passengers. We have also 
performed a systematic literature review and identified threats to resilience, categorized them, and 
mapped them to their corresponding principles and protection mechanisms. 

It is important to note that most techniques identified in this work are not limited to cybersecurity. In 
many cases, it does not matter whether a deviation from normal behavior of a component, 
subsystem, or system is due to a security problem or if the source is a software or hardware problem. 
The reactions can, in many cases although not all, be the same. There may be different levels of 
response, ranging from raising an alarm to be checked by the OEM to immediately enforcing stricter 
firewall and gateway rules, limiting, or disabling some functionality, disconnecting the vehicle from 
external communications, or even initiating a complete, safe, shutdown of the vehicle. 

In the remainder of this WP, we will use the term (cyber)security when we refer to intentionally 
created problems and safety when we refer to randomly occurring software and hardware problems 
similar to the traditional work as defined in ISO 26262 [1], even if security problems can endanger 
the safety of the vehicle. 
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As described in work package WP1, a vehicle is a complex system with hundreds of computers and 
multiple networks enabling various types of communication. We are currently transitioning to 
massively parallel processor systems with thousands of processor cores offering virtualization and AI 
functionality. There are also multiple ways for vehicles to communicate with the infrastructure 
around them, for instance USB, Bluetooth and WLAN enable communication to passengers. We have 
V2X communication to nearby vehicles and road-side objects, and cellular communication to the 
Internet and cloud-based services. In addition, cameras, radar and other sensors and devices that 
receive information from the surroundings which also may be faulty, manipulated or made to mis-
interpret their input. This makes a vehicle a very complicated system to protect. A systematic 
approach to both identifying possible threats, failure modes, and how to react to threats is necessary 
but far from trivial to perform. 

1.1 Scope and Purpose 

Automated driving functions make decisions based on input from sensors and external 
communication. Many services are based on machine learning techniques since traditional 
programming becomes too complicated, and it is impossible to foresee all possible types of situations 
in advance and how to react to all possible types of input. From a resilience perspective and when 
facing intelligent attack scenarios, it can be hard to identify the real source of a detected problem 
and consequently know what principles we should rely on for dynamic reconfiguration of vehicle 
functions. 

The first step in this direction is to define safe modes or safe states for operating a vehicle. This work 
has traditionally been part of a safety HARA (hazard and risk analysis) process where the last option 
is either to enter a “limp home mode” or to completely disable a vehicle. A more fine-grained 
approach is desirable where functionality is gradually downgraded based on failing sensors, 
components, or subsystems while always maintaining a safe state of the vehicle. When dealing with 
cybersecurity issues, it is not obvious that we can reuse the same safe states as those identified in 
the HARA process. The real source of a problem may be unknown or at least cannot be identified 
with certainty, thus a state that is identified as safe from a safety perspective may be vulnerable from 
a security point of view. 

In addition, how to react to a problem may differ between safety and security. For example, if a 
compromised ECU starts transmitting faked speed messages and a monitoring IDS system detects 
incorrect speed messages on the network, it is not the right action to restart the ECU responsible for 
transmitting the correct speed messages. Instead, a more complicated process to identify the real 
source of the problem is needed. 

In this work package, we have also looked at IDS systems and how to react when problems are 
detected, especially since it may be hard for a vehicle to correctly assess its own state and know 
whether it is functioning well when compromised. We have therefore worked with “reputation 
systems” where all vehicles report their view of how other vehicles behave and if they seem to 
function as intended. Such reports can be sent for cloud analysis and if a specific vehicle gets many 
complaints, a deeper investigation of its functionality is warranted. 

1.2 Limitations 

More work is needed related to the definition of cyber-secure safe states. As an example, we have 
not performed a complete analysis of how to identify such states but merely identified the need for 
such work. 



CyReV D2 Vinnova Dnr 2018-05013 

  Vinnova Dnr 2019-03071 

 

 The CyReV Consortium                   9 (44) 

Another challenge requiring more work is to identify on what system levels reconfiguration can and 
should be done: system level, network level or architecture (layers) and how to obtain defense in 
depth. To do this, it is necessary to identify failure modes to get a deeper understanding of how 
every system and subsystem are related to each other and in which ways they depend on each 
other’s services, and then map failure modes to mitigation techniques. 

Much of the work reported in this WP is connected to work done in other work packages. 
Collaboration between work packages has been a key factor in dealing with such complex problems, 
and many of the concepts described here are further explored in other work packages as well. 
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2 Resilient Vehicle Design 

In the CyReV project, we have defined resilience as: 

 

Property of a system with the ability to maintain its intended operation in a dependable and 
secure way, possibly with degraded functionality, in the presence of faults and attacks. 

 
There is also a note to this definition: Dependable and secure refer to attributes such as safety, 
confidentiality, integrity, privacy and maintainability." 

We believe this definition clearly shows what is meant by resilience and gives a clear view of why 
obtaining resilience is important. In this context, “dependable and secure way” means that we must 
address safety and security. Security is often referred to as focusing on the three fundamental 
attributes, i.e., confidentiality, integrity, and availability, whereas dependability is “the ability to 
avoid service failures that are more frequent and more severe than acceptable” [13]. Therefore, 
dependability not only includes safety but also other attributes, i.e., availability, reliability, integrity, 
and maintainability, see the picture below. Laprie [14] further elaborates on the need for ubiquitous 
systems to maintain dependability despite continuous change, which leads to a similar definition of 
resilience, namely “the persistence of dependability when facing changes.”  

There are also other aspects that are needed for long-term endurance, such as forensics, which is 
also addressed in this project. The relationship between resilience, security, dependability, and safety 
can be illustrated as [15]:  

The authors differentiate between resilience and scalable resilience, to highlight that changes, such 
as technological, functional and environmental, occur over time and thus require the system to be 
capable of evolving. This emphasis on long-term needs is very important in the automotive domain 
where vehicles are expected to be operated for several years or even decades.  

 

Due to the relationship between safety, security and resilience, we refer to security when referring to 
techniques that directly support one of the security attributes. With resilience, we mean techniques 
that support both dependability (safety) and security. 
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There are many reasons why resilience is important, for instance: 

 First and most important, we need to guarantee the safety of passengers and other vehicles 
due to software, hardware, and security problems. The problems may be security-related but 
can also result from a hardware or a software problem (“bugs”). 

 To make vehicles survive and continue to function, possibly with degraded functionality, when 
a problem is detected. It may take some time until the problem can be diagnosed by the OEM 
and before a necessary software update is available. Depending on the result of this analysis, 
other vehicles may be instructed to reconfigure themselves to prevent this problem from 
occurring. 

 To prevent massive denial of service attacks (DoS) against fleets of vehicles. An attacker who 
can remotely trigger “limp home mode” or to totally disable vehicles may spawn fleet-wide 
attacks. Vehicles should be able to reconfigure themselves to survive such attacks without 
external help. 

Many of the services in a vehicle rely on reliable and secure communication and on receiving correct 
data from sensors and cameras: platooning, virtual traffic lights, and lane changing. In fact, most 
automated driving functions rely on communication. Therefore, many of the resilience techniques 
identified in our work focus on communication, networks and the (network) architecture of the 
vehicle. A current trend in the automotive industry is to move functionality from individual, 
distributed ECUs to more centralized and powerful multi-processor systems. Still, communication 
between physical and virtual ECUs are key components in obtaining a safe and secure vehicle. 

In this work package, we have investigated how a resilient vehicle system can be built based on the 
reference architecture from Task 2.1. We have identified components necessary to be able to 
understand and to enable future simulations of security problems to study possible actions and limit 
the potential impact. We have also investigated possible ways to react when security problems are 
detected, and based on functionality, created a usable structure of available methods. In this work 
package, we have systematically identified the threats to resilience and mapped them to the 
principles and mechanisms for detection, mitigation, recovery, and endurance. 

2.1 Safe states 

Resilience is how to guarantee that a vehicle is always in a safe (and secure) state or mode. For 
example, it may be fully functional, partly functional, or disabled. The identification of safe states is a 
very complex task and depends largely on the actual design of the vehicle. Therefore, it has not been 
possible to define specific safe states in this project, nor to answer the question exactly of how many 
states there should be. Safe states have been defined by ISO, mainly with respect to “traditional 
safety” without considering security, although the definitions still apply in our broader context: 

ISO 26262: “[Safe state is an] operating mode (3.102), in case of a failure (3.50), of an item (3.84) 
without an unreasonable level of risk (3.128). Note 1 to entry: See Figure 5. Note 2 to entry: While 
normal operation can be considered safe, the definition of safe state is only in the case of failure (3.50) 
in the context of the ISO 26262 series of standards.” [1] 

 

ISO/TR 4804: “[Safe state is an] operating mode that is reasonably safe. Note 1 to entry: The safe 
state is the state in which both fail-safe (3.18) and fail-degraded (3.16) systems will provide a solution 
(technically provided by an alternative functionality) to avoid risk, in an acceptable criterion, to any 
road user (3.46).” [2] 
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A safe state can be achieved by performing different actions, e.g., to restart an ECU or a subsystem, 
to reconfigure functionality into a degraded state or to disable one or more services completely. In 
our REMIND paper (see chapter 3.1), a set of techniques and solutions relevant for the automotive 
domain are identified, such as reinitialization, reparameterization, relocation/migration, isolation, 
and software rejuvenation. The main idea is to have a vehicle able to reconfigure itself to achieve 
graceful degradation when needed. 

2.2 How many safe states should we aim for? 

The process of defining safe states of a vehicle is complex. It must begin with identifying possible 
failure modes of the system, which can partly be the result of a Threat Analysis and Risk Assessment 
process, TARA. It is a complex task, and it is far from obvious whether we should aim for 10 or 100 
different states. The number of states is not necessarily the same as clearly identified working 
modes, but if all deviations from a fully (completely) functional vehicle should be counted as a 
different state, such as a broken taillight or a non-functioning non-essential ECU, then the number of 
combinations and the number of states will be huge. It does not mean that we should not care about 
such deviations, but counting all possible safe states and combinations of deviations is not 
meaningful since many deviations may not relate to each other, and the impact of deviations can 
vary vastly. 

A more reasonable approach is to focus on different levels when defining safe states. A subsystem 
may have several safe states which guarantee that its output is trustworthy to its surroundings, but it 
may also be allowed to produce data of lower quality and notify the surrounding about this. 
Depending on the quality of data received, some other higher-level functions may have to reduce 
their functionality or use other sensors or subsystems to double-check or receive more accurate 
information. Counting the number of possible safe states is therefore complex and may not even be 
meaningful. However, the functionality of each subsystem must be analyzed in detail in the 
HARA/TARA processes to make sure the service they deliver is correct and trustworthy, and if it 
offers limited service, other modules depending on this service should be aware of this and may in 
turn reduce the service they offer.  

For example, if a system receives contradicting input where the reported speed differs between its 
own sensors and the reported GPS speed, some high-level functions like engaging automatic parking 
functionality, may have to be disabled until the correct speed can be determined. This discrepancy 
may also be detected by a network IDS/IPS system which may initiate some internal actions to 
correct the problem. 

There are many issues to consider when safe states are to be identified, for example: 

 Do we have similar safe states in safety and security? 

 In what way will the transition to more centralized architectures change the scene? 

 Safety and security interplay is important: the definition of safe states must be done together 
regardless of whether we have the same states or not. Security enhancing actions should not 
be allowed to affect safety in a negative way, and vice versa. 

 Standards for safety and security must also be more aligned to allow safety and security design 
at the same time. 

A reference architecture is important when reasoning around these questions where examples of 
actions and consequences can be analyzed in a limited, simplified environment.  
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2.3 Security and Safety interplay with respect to safe states 

As mentioned above, it is important to investigate the safety and security interplay, since safety and 
security mechanisms may interfere with each other and cause problems to the other domain, 
something which is further investigated in work package 3.3. The picture below by Sangchoolie et.al. 
[20] shows examples of different security mechanisms, threats they address according to the STRIDE 
methodology [18], and which dependability attribute (safety and security) they may affect (see WP 
3.3 for more details). Creating tables like this is useful when analyzing and choosing mechanisms to 
be used to achieve resilience and whether closer collaboration is needed between engineers in the 
two fields. 

 

An example of non-desired interaction is the use of redundant ECUs where a typical dependability 
mechanism may compromise security. Consider a vehicle which has two redundant ECUs responsible 
for reporting the vehicle speed. One ECU is always active and the other passive. If the active ECU 
stops transmitting messages, the other ECU becomes active and takes over. Then, if the first ECU is 
restarted and becomes functional again, it remains passive and waits for the other to fail. However, if 
a third ECU in the vehicle is compromised and starts transmitting incorrect (i.e. faked) speed 
messages, both legitimate ECUs may believe that the other is active and will refrain from 
transmitting, leaving only faked messages on the bus. If no redundancy was used at all for speed 
messages, there would have been conflicting messages on the bus, correct information would be 
mixed with incorrect information, and receiving nodes would easily detect that something was wrong 
since speed varies too quickly – for example, every 10ms speed jumps between 50 and 100 km/h. 

Similarly, when defining safe states, it may be that some states which are perfectly fine from a safety 
perspective are less optimal from a security perspective. An attacker may have to take several 
actions or steps to move the system into such a “safe” state, a state that is less optimal from a 
security perspective and from which is possible to spawn a certain attack. An example could be to 
fake speed and some other messages to convince the vehicle it is safe to enter automatic parking 
when it is actually travelling at high speed on a highway. 
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2.4 Should the driver be allowed to make some choices? 

Another issue related to safe states is if the driver should be allowed to override some alarms, e.g. 
decide that it is a false alarm, and that the vehicle should not go into “limp home” mode. If we allow 
driver intervention, it can affect how the vehicle behaves and what safe states it enters. It may be 
that the vehicle requires assistance to decide whether a function works or not, or it may ask the 
driver whether some functions should be disabled or not. It may also be possible to allow the vehicle 
to ask the driver about which sensor value is correct if there is a conflict. This question was raised 
during the project, but since user actions and behavior are outside the scope of this project, we 
decided not to investigate it further. 

Another related issue is controllability, i.e. how the driver will handle the situation if a vehicle enters 
a new safe state and needs to immediately shut down some functions. Some mitigation and recovery 
mechanisms may require an immediate takeover by the driver before they can be executed. 
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3 A Framework for Resilient Design – Techniques identified 

 

We have investigated the principles for how to respond when suspected security problems are 
detected. The goal has been to systematically identify the threats to vehicles and map them to 
principles and mechanisms. This is useful and can guide designers to make an informed and optimal 
selection of resilience techniques to be used in an automotive system.   

 

3.1 “REMIND - A Framework for the Resilient Design of Automotive Systems” [7] 

Paper presented at IEEE Secure Development (SecDev), Atlanta, GA, USA, 2020 

Authors: T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, and T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

This work has led to the REMIND framework [7] comprising four strategies: detection, mitigation 
(analyze and respond), recovery and endurance. This work required us to perform a structured 
analysis of resilience techniques found in the literature, where 200 of the most relevant publications 
indexed by Scopus were selected. As shown in the figure below, we have also created a structure 
with different “patterns”, i.e. more detailed descriptions for how the strategies can be realized: 

  

We can see that some patterns overlap two strategies, for example redundancy which can be a tool 
both to detect deviating output by using multiple systems, ECUs, or sensors, but also to mitigate 
threats by immediately restarting failing components. 

The patterns were then further divided into different techniques that can be used to implement a 
certain strategy, as shown in the figure below. It also shows what type of asset is addressed, 
hardware, software, network communication or data storage. For each technique, one or several 
important papers are referenced to allow the reader to further investigate the concept: 
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In the figure, we can see that the Mitigation strategy overlaps with Recovery and Detection and that 
some techniques and solutions are applicable to both. Appendix B of the REMIND paper contains 
more details and explanations, for example, it discusses Detection strategies in some detail. A short 
extract from the paper is shown here: 
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Resilience of automotive systems is required to cope with diverse and newly emerging attacks that 
make use of the advances in communication and functionality. Automotive systems need to maintain 
the intended functionality, even if degraded, to ensure the safety of the passengers and the 
surrounding environment. Research in identifying and categorizing resilience techniques has been 
performed in areas such as cloud computing [16], fog computing [17] and cyber-physical systems[15]. 
In this work, we review and analyze scientific literature on resilience techniques, fault tolerance, and 
dependability. As a result, we present the REMIND resilience framework supporting the design of 
resilient vehicles by (i) identifying techniques for attack detection, mitigation, recovery and resilience 
endurance; (ii) organizing these techniques into a taxonomy to guide designers in choosing the 
needed technique for the task at hand; (iii) providing guidelines describing how the proposed 
taxonomy can be applied against common security threats; and (iv) discussing the trade-os when 
implementing techniques identified in REMIND. 

 

EXTRACT FROM PUBLICATION 

Abstract — In the past years, great effort has been spent on enhancing the security and safety of 
vehicular systems. Current advances in information and communication technology have increased 
the complexity of these systems and lead to extended functionalities towards self-driving and more 
connectivity. Unfortunately, these advances open the door for diverse and newly emerging attacks 
that hamper the security and, thus, the safety of vehicular systems. In this paper, we contribute to 
supporting the design of resilient automotive systems. We review and analyze scientific literature on 
resilience techniques, fault tolerance, and dependability. As a result, we present the REMIND 
resilience framework providing techniques for attack detection, mitigation, recovery, and resilience 
endurance. Moreover, we provide guidelines on how the REMIND framework can be used against 
common security threats and attacks and further discuss the trade-offs when applying these 
guidelines. 

 

CONCLUSION – The reviewed work shows the current research efforts towards making systems 
resilient to attacks and faults in related domains. We present a novel structure for categorizing 
resilience techniques in the form of the REMIND framework with the aim to lead designers in making 
informed decisions when choosing resilience techniques. We build upon the existing work and set 
the focus on the limitations of automotive systems and their challenges. The REMIND techniques 
have been chosen considering automotive assets and related attacks which are described in Section 
III and further linked to the guidelines and trade-off analysis in Appendix A. 

Future work includes the validation of the REMIND framework in regard to studying its applicability 
in industry in more depth. Furthermore, specific solutions for the identified techniques that consider 
the unique properties of automotive vehicles can be explored. Especially, the role of software-
defined networking and its contribution to resilience can be investigated. 

 

Appendix A of this paper contains a detailed 5-page long listing of resilience techniques including 
trade-offs when implementing a specific technique. An example from the Appendix is shown here 
which describes fabrication/jamming of network traffic: 
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Similar tables exist for other types of attacks against the identified asses. For more information, 
please see the published paper. 
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4 A framework with resilience techniques 

To create a structure of resilience techniques found in the literature and see to what extent they 
could have prevented known attacks, we have systematically reviewed disclosed attacks targeting 
vehicles published between 2010 and 2020 and identified what assets were targeted, what security 
properties were violated and from that we have identified appropriate security and resilience 
mechanisms that can be useful to mitigate these attacks. Out of a total of 52 unique attacks, 37 high 
and critical risk attacks were identified.  

Focusing on the type of asset being the target for the attack, communication has been attacked most 
often (29) followed by software (17), sensors (10) and data storage (2). When looking further into 
attacks towards the communication, we can see that most of the attacks were targeting externally 
available interfaces (23) if considering interfaces inside the vehicle such as OBD-II as external. By 
considering only wireless communication, e.g., Bluetooth, key fobs, Wi-Fi and cellular 
communication, the number of distinct attacks are reduced to 12. 

The software asset was most often attacked when it was running (10) followed by attacks when at 
rest (7) which exploited the software update functionality, weak crypto systems being used or the 
software state. Attacks towards sensors respectively the hardware, center around showing 
insecurities in GNSS. However, interesting attacks (5) that target other vehicle sensors, such as the 
camera, lidar and ultrasonic, have also been published. Most of the attacks on sensors require cyber 
resilience to withstand attacks such as camera blinding and sensor spoofing. Attacking the data 
storage seemed to be far less attractive for attackers. However, two attacks have extracted 
certificates or stolen personal information from replaced spare parts. 

We can also see that in 2016 most attacks (15) were published and 7 to 9 attacks per year in the 
years following. The assets which have been targeted do not show any trends, yet novel attacks on 
the CAN bus are ceasing. 

 

4.1 “Resilient Shield: Reinforcing the Resilience of Vehicles Against Security 
Threats” [9] 

Paper presented at IEEE 93th Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland 

Authors: K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, and T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

The next step was to develop a threat model by identifying vital vehicle assets that were targeted by 
these attacks where assets, potential threat actors, and the STRIDE categories for each attack were 
listed. They were then further mapped to appropriate security and resilience techniques. The 
security and resilience techniques found in the REMIND framework (chapter 3.1 above) was used and 
was extended with 7 more categories found useful when categorizing these attacks: 
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Existing work on securing vehicles focuses on providing frameworks that help designers and 
developers identify the necessary mechanisms to mitigate various attack scenarios. Microsoft STRIDE 
[18], for instance, provides a tool for threat modelling. HEAVENS [19] supports developers in defining 
security objectives based on their proposed TARA. Other works such as Sommer et al. [21], focus on a 
taxonomy for attacks against automotive systems. This chapter combines security and resilience 
techniques needed in automotive systems in one framework. For the proposed framework, we apply 
the SPMT methodology on systematically identified attacks to derive security guidelines and detailed 
directives focusing on security and resilience. We further map the potential threat actors to the 
assets exposed by each attack and show which security and resilience techniques can be deployed to 
mitigate them. The resulting framework, named Resilient Shield, builds the base for designing secure 
and resilient systems, yet allows them to be easily extended in the presence of novel attacks. 

 

EXTRACT FROM PUBLICATION 

Abstract — Vehicles have become complex computer systems with multiple communication 
interfaces. In the future, vehicles will have even more connections to e.g., infrastructure, pedestrian 
smartphones, cloud, road-side units, and the Internet. External and physical interfaces, as well as 
internal communication buses have shown to have potential to be exploited for attack purposes. As a 
consequence, there is an increase in regulations which demand compliance with vehicle cyber 
resilience requirements. However, there is currently no clear guidance on how to comply with these 
regulations from a technical perspective. 
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To address this issue, we have performed a comprehensive threat and risk analysis based on 
published attacks against vehicles from the past 10 years, from which we further derive necessary 
security and resilience techniques. The work is done using the SPMT methodology where we identify 
vital vehicle assets, threat actors, their motivations and objectives, and develop a comprehensive 
threat model. Moreover, we develop a comprehensive attack model by analyzing the identified 
threats and attacks. These attacks are filtered and categorized based on attack type, probability, and 
consequence criteria. Additionally, we perform an exhaustive mapping between asset, attack, threat 
actor, threat category, and required mitigation mechanism for each attack, resulting in a 
presentation of a secure and resilient vehicle design. Ultimately, we present the Resilient Shield, a 
novel and imperative framework to justify and ensure security and resilience within the automotive 
domain. 

 

CONCLUSION -- We have performed a comprehensive threat and risk analysis of published attacks 
against vehicles and derived imperative security and resilience mechanisms by applying the SPMT 
methodology. A threat model with vital vehicle assets and related potential threat actors, their 
motivations, and objectives, was developed. By an extensive analysis of threats and attacks, further 
filtered and categorized based on attack type, probability and consequence criteria, an attack model 
was developed based on the remaining high-risk attacks. Based on the developed models, a 
comprehensive mapping between asset, attack, threat actor, threat category, and defense 
mechanisms was performed for all attacks and is presented in Table I. Table I summarizes the 
outcomes by applying SPMT, i.e. the Resilient Shield, a novel framework both justifying and defining 
imperative security and resilient mechanisms needed in a modern vehicle. Consequently, the 
Resilient Shield can be used as a vital baseline for protection against common security threats and 
attacks. 

We believe our work is imperative for facilitating and guiding the design of resilient automotive 
systems; however, it still remains to be seen how large the coverage is in relation to future attacks. 
Moreover, testing and validation of the Resilient Shield within an industrial context is left as a future 
work. 
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5 Risk assessment and Standardization 

Standardization of security work in the vehicular domain is important, and in an earlier project, 
HEAVENS, we developed a framework for a future standard with respect to risk assessment with a 
focus on cybersecurity. The major goal with this project was to develop a threat and risk assessment 
method which addresses security which is aligned with established functional safety standards for 
road vehicles (ISO 26262). This led to the HEAVENS security model which is used in the automotive 
industry today and it has heavily influenced the SAE J3061 and ISO/SAE 21434 standards which, as of 
2023, are used by the industry to reach type approval. 

The picture below shows projects and work which has influenced the ISO/SAE 21434 standard and 
shows the role of the HEAVENS model [25]: 

 

Since the ISO/SAE 21434 standard introduces additional requirements which were not present in 
HEAVENS for the risk assessment process, the HEAVENS standard needs to be updated. We have 
therefore in this project updated the requirements to become HEAVENS 2.0 to facilitate for those 
who currently use it in practice. HEAVENS 2.0 works as a drop-in threat analysis and risk assessment 
(TARA) model for ISO/SAE 21434. Practitioners who are already familiar with HEAVENS 1.0 will be 
able to learn this model easily and therefore be one step closer to applying ISO/SAE 21434. Finally, 
with minor parameter calibrations, HEAVENS 2.0 can also be applied to similar industries, such as 
medical devices or industrial systems. 

This update aligns terminology, it merges threat analysis and risk assessment phases and includes 
damage scenario identification. It further adjusts the threat levels to meet the requirements in the 
ISO standard to require a specific number and names for the attack feasibility rating. Finally, a change 
is that HEAVENS 2.0 focuses on the road user as the primary stakeholder and no longer on the OEM 
perspective which affects the impact rating of vulnerabilities and threats. All in all, 12 updates to the 
HEAVENS 1.0 framework/standard were introduced. 

ISO/SAE 21434 has quickly been established in the industry. However, at least two significant 
challenges remain. In terms of the management of TARA throughout the life cycle and the supply 
chain, as well as in the response to vulnerabilities and incidents, the standard should be improved 
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and extended. We have therefore performed a methodological gap analysis to identify and discuss 
challenges and issues, based on which we propose two major improvements to ISO/SAE 21434 that 
could be incorporated in future versions of the standard: A novel management process for TARA to 
improve risk management over the life cycle and supply chain; and a revised process for identifying 
and responding to vulnerabilities and attacks that is better aligned with established processes and 
more practically feasible. 

5.1 “Proposing HEAVENS 2.0 – an automotive risk assessment model” [27] 

Paper presented at: ACM Computer Science in Cars Symposium, CSCS ‘21 

Authors: A. Lautenbach, M. Almgren, T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

The update of HEAVENS 1.0 aligns terminology, it merges threat analysis and risk assessment phases 
and includes damage scenario identification. It further adjusts the threat levels to meet the 
requirements in the ISO standard to require a specific number and names for the attack feasibility 
rating. Finally, a change is that HEAVENS 2.0 focuses on the road user as the primary stakeholder and 
no longer on the OEM perspective which affects the impact rating of vulnerabilities and threats. All in 
all, 12 updates to the HEAVENS 1.0 framework/standard were introduced. 

The workflow of the HEAVENS 2.0 can be summarized as: 
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EXTRACT FROM PUBLICATION 

Abstract – Risk-based security models have seen a steady rise in popularity over the last decades, 
and several security risk assessment models have been proposed for the automotive industry. The 
new UN vehicle regulation 155 on cybersecurity provisions for vehicle type approval, as part of the 
1958 agreement on vehicle harmonization, mandates the use of risk assessment to mitigate 
cybersecurity risks and is expected to be adopted into national laws in 54 countries within 1 to 3 
years. This new legislation will also apply to autonomous vehicles. The automotive cybersecurity 
engineering standard ISO/SAE 21434 is seen as a way to fulfill the new UN legislation, so we can 
expect quick and wide industry adoption. One risk assessment model that has gained some 
popularity and is in active use in several companies is the HEAVENS model, but since ISO/SAE 21434 
introduces additional requirements on the risk assessment process, the original HEAVENS model 
does not fulfill the standard. 

In this paper, we investigate the gap between the HEAVENS risk assessment model and ISO/SAE 
21434, and we identify and propose 12 model updates to HEAVENS to close this gap. We also discuss 
identified weaknesses of the HEAVENS risk assessment model and propose 5 additional model 
updates to overcome them. In accordance with these 17 identified model updates, we propose 
HEAVENS 2.0, a new risk assessment model based on HEAVENS which is fully compliant with ISO/SAE 
21434 

 

Conclusions – Thanks to new legislation, ISO/SAE 21434 will see widespread adoption in industry and 
automotive companies need to learn how to integrate cybersecurity processes on project and 
organizational level. Threat analysis and risk assessment is one of the most prominent of these 
processes, and it seems especially prudent to apply Proposing HEAVENS 2.0 in autonomous driving 
use cases to minimize the potential for maliciously caused safety incidents. 

In order to facilitate the continued use of experiences from HEAVENS 1.0 in automotive projects, we 
analyzed its gap to the risk assessment framework mandated by ISO/SAE 21434. Consequently, we 
proposed 12 model updates to close this gap, and we also addressed 5 shortcomings identified for 
HEAVENS 1.0. Together, these 17 model updates form the basis for HEAVENS 2.0. 

HEAVENS 2.0 works as a drop-in threat analysis and risk assessment (TARA) model for ISO/SAE 
21434. Practitioners who are already familiar with HEAVENS 1.0 will be able to learn this model easily 
and therefore be one step closer to applying ISO/SAE 21434. Finally, with minor parameter 
calibrations, HEAVENS 2.0 can also be applied to similar industries, such as medical devices or 
industrial systems. 
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5.2 Gap analysis of ISO/SAE 21434 – Improving the automotive cybersecurity 
engineering life cycle” [31] 

Paper presented at 2023 IEEE 26th International Conference on Intelligent Transportation Systems 
(ITSC 2023) 

Authors: D. Grimm, A. Lautenbach, M. Almgren, T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Abstract – Due to the ongoing legislative shift towards mandated cybersecurity for road vehicles, the 
automotive cybersecurity engineering standard ISO/SAE 21434 is seeing fast adoption throughout 
the industry. Early efforts focus on threat analysis and risk assessment (TARA) in the concept and 
development phases, exposing the challenge of managing TARA results coherently throughout the 
supply chain and life cycle. 

While the industry focuses on TARA, other aspects such as vulnerability or incident handling are 
receiving less attention. However, the increasing threat landscape makes these processes 
increasingly important, posing another industry challenge. 

In order to better address these two challenges, we analyze the cybersecurity engineering framework 
of ISO/SAE 21434 for gaps or deficiencies regarding TARA management and vulnerability and incident 
handling, as well as similar processes for incident handling in IT security. The result is a proposal for 
modifications and augmentations of the ISO/SAE 21434 cybersecurity engineering framework. In 
particular, we propose a TARA management process to facilitate the coordination and information 
exchange between different systems and life cycle phases, and we propose improvements to the 
vulnerability and incident handling processes in ISO/SAE 21434 so that they are more aligned with 
established standards. This amounts to 13 new terminology definitions, 4 new process steps, 2 
modified process steps and 1 entirely new process. 

Conclusions – There is a need for clear structures and guidelines around automotive cybersecurity 
engineering, and ISO/SAE 21434 is largely fulfilling that need. Nevertheless, there are aspects that 
can and should be improved, in particular around the interaction of TARA processes and other 
cybersecurity activities, such as vulnerability and incident handling. In line with this, we have 
proposed a new TARA management process and improvements to the vulnerability and incident 
handling processes in ISO/SAE 21434, building on existing IT standards and guidelines, as well as on 
research into TARA improvements. We expect that our proposed improvements will help automotive 
companies to better coordinate their cybersecurity activities, and that an adoption of the proposed 
terminology will lead to improved clarity in communication. Hopefully, they can be considered in 
future versions of ISO/SAE 21434. 
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6 Attacks and Attack Detection 

We have investigated some detection mechanisms for in-vehicle networks and this work is closely 
related to WP5. Here we have focused on usability with respect to resilience, and particularly the 
detection mechanisms described earlier. First, a Bachelor Thesis at Chalmers has resulted in a book 
chapter describing in-vehicle communication and security [10].  

We have also recognized a work performed at Chalmers where a new type of IDS system was 
developed, and we wanted to see to what extent this method would be applicable and could be 
tweaked to vehicular networks. This work resulted in SPECTRA; a system based on spectral analysis of 
CAN message payloads. It has been implemented and tested in a Volvo XC 60 vehicle and the results 
are very promising (see chapter 6.2). 

 

6.1 Published book chapter: “Security of In-Vehicle Communication Systems” [10] 

Chapter appearing in Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities. 

Authors: D. Dubrefjord, M. Jang, H. Hadi, T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Abstract - The automotive industry has seen remarkable growth in the use of network and 
communication technology. These technologies can be vulnerable to attacks. Several examples of 
confirmed attacks have been documented in academic studies, and many vehicular communications 
systems have been designed without security aspects in mind. Furthermore, all the security 
implications mentioned here would affect the functionality of decision support systems (DSS) of IoT 
and vehicular networks. This chapter focuses on in-vehicle security and aims to categorize some 
attacks in this field according to the exploited vulnerability by showing common patterns. The 
conclusion suggests that an ethernet-based architecture could be a good architecture for future 
vehicular systems; it enables them to meet future security needs while still allowing network 
communication with outside systems. 

CONCLUSIONS – The analysis of the in-vehicle communication protocols CAN, LIN, FlexRay, and 
Automotive Ethernet has shown that all protocols are developed with hardly any thought of security 
in mind. Some countermeasures or fixes have been listed for the different protocols, but the 
simplicity of the protocols often makes it impractical or impossible to apply the fixes. The four above 
mentioned protocols all lack security features for authentication, which makes it possible to, for 
example, perform replay-attacks and spoof messages. This lack of security has broader implications 
since vehicles are now becoming connected to the Internet. A vulnerability may be remotely 
exploited allowing an attacker to control arbitrary functions of a vehicle and at will disrupt the 
rightful functionality. The authors believe that a transition to automotive Ethernet is an important 
step forward for securing future connected vehicles.  

Ethernet is a well-researched area when it comes to security, and it makes it possible to transfer 
well-known protocols and security technologies to vehicular networks. The cost of Ethernet is what 
currently makes it unattractive, but the authors believe prices will go down when it becomes a more 
mature and commonly used technology in our vehicles. 
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6.2 “Spectra: Detecting Attacks on In-Vehicle Networks through Spectral Analysis of 
CAN-Message Payloads” [12] 

Paper presented at 36th ACM Symposium on Applied Computing, Gwangju, South Korea 2021 

Authors: W. Aoudi, M. Almgren, N. Nowdehi, T. Olovsson 

The complete text is available online and is not duplicated here for copyright reasons. 

 

The problem with current in-vehicle IDS systems is their rate of false alarms. Good systems can have 
a seemingly low false alarm rate, such as 10-6, but in vehicular environments this is decades away 
from being useful. One false alarm per car per year means millions or tens of millions of events to 
investigate every year for an OEM.  

We have developed SPECTRA, which combines a high detection rate with extremely few false alarms 
– much better than most other proposed solutions. The SPECTRA system has many promising 
features although further testing in real environments is needed to fully see its advantages and 
possible disadvantages. 

Four different attack scenarios were tested: suspension attacks, fabrication attacks, masquerade 
attacks and conquest attacks:  

 

 

Schematics for a suspension attack (a), fabrication attack (b), masquerade attack (c), and conquest attack (d). 

 

The conquest attack (figure d) is the hardest attack type to deal with by an IDS system. In a conquest 
attack, the adversary directly conquers the target ECU by fully compromising it. The adversary is able 
to reprogram the target ECU instead of having to compromise another node on the network to inject 
the intended malicious payload. Unlike the other scenarios (a-c), this attack causes no changes in the 
normal behavior of any of the ECUs with respect to message frequency, clock offset, or clock skew 
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behavior. SPECTRA was still able to detect this change of behavior and only needs a short learning 
period to understand the system it should monitor. 

When performing a masquerade attack, the deviation from normal behavior can be visualized as 
follows: 

 

 

In short, the blue vector (circle) is the result of the training phase, and all regular network traffic 
should fall into this cluster of blue vectors. When under attack, the behavior changes and the traffic 
will look like the red set of vectors. For a full explanation and more details about how the system 
works, please see the published paper. The characteristics of SPECTRA are promising and is 
specification-agnostic which makes it applicable to a wide range of vehicle models and makes it 
deployable in real-world settings, something we tested in a real Volvo XC60 vehicle. 

 

EXTRACT FROM PUBLICATION 

Abstract - Nowadays, vehicles have complex in-vehicle networks that have recently been shown to 
be increasingly vulnerable to cyber-attacks capable of taking control of the vehicles, thereby 
threatening the safety of the passengers. Several countermeasures have been proposed in the 
literature in response to the arising threats, however, hurdle requirements imposed by the industry 
are hindering their adoption in practice. In this paper, we propose spectra, a data-driven anomaly-
detection mechanism that is based on spectral analysis of CAN-message payloads. Spectra does not 
abide by the strict specifications predefined for every vehicle model and addresses key real-world 
deployability challenges. 

CONCLUSION – With the rapid increase in the number of cyberattacks on vehicles, designing 
intrusion detection systems for CAN communication has become a major area of interest. This paper 
has made several noteworthy contributions to the field of automotive security. First, we have 
presented spectra, an efficient attack-detection mechanism that is particularly suitable for the IVN 
domain. Second, we have demonstrated, through extensive experiments including performing 
attacks on a 2018 Volvo XC60 test vehicle, how SPECTRA can detect stealthy attacks on IVNs. Finally, 
we have shown that SPECTRA enjoys the advantage of being specification-agnostic, which makes it 
applicable to a wide range of vehicle models and deployable in real-world settings. 
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7 Secure software updates and reference architectures 

Having a secure software update process is essential to be able to guarantee a fully functional and 
resilient system design. Software updates should be possible to perform at any time using any type 
of network connection. We have created a unified software update framework, UniSUF, which 
should fulfill most demands for a versatile, flexible, and secure solution. We have also developed 
requirements for secure vehicle software updates by defining an attacker model and from there 
derived security requirements. The resulting framework can be used as a reference architecture to 
guide when engineers and software architects design software update systems, not only for vehicles 
but also for related areas such as cyber-physical systems, IoT devices and smart cities. 

It is important to note that every vehicle is unique and needs to have its unique software packages. 
Thus, a unique vehicle configuration, multiple software files for every ECU, many unique 
cryptographic keys, and ECU-specific diagnostic requests are required. For instance, special 
cryptographic keys are needed to turn off security functionality that might otherwise block the 
installation process. 

There are three main entities involved in the software update process: the producer, the consumer, 
and the repository. The producer is responsible for producing the software. The consumer is 
responsible for the download and installation process of the software, and the repository is a storage 
point for software preferably located in various cloud sources, enabling both proximity and 
redundancy for data in relation to the vehicle.  

7.1 Secure Vehicle Software Updates: Requirements for a Reference Architecture 
[32] 

Paper presented at IEEE Vehicular Technology Conference VTC-2023, 979-8-3503-1114-3 (ISBN). 

Authors: K. Strandberg, U. Arnljung, T. Olovsson, and D. Kengo Oka 

The complete text is available online and is not duplicated here for copyright reasons. 

In this paper, we have identified general requirements to ensure a secure software update process. 
These requirements fulfill common security goals for cyber-secure vehicles. Moreover, we present a 
reference architecture named UniSUF based on previous work. We validate the usability and security 
of our reference architecture by identifying an attacker model and performing a threat assessment. 
Finally, we identify mitigation mechanisms and map the specific threats to security goals and 
requirements to strengthen the robustness and design of UniSUF for a broad industry acceptance 
with UN Regulation No. 156 in mind. 

We assume a common agenda where someone aims to manipulate the software update process or 
the software itself at any entity or during communication between entities throughout the software 
update process. For instance, the intent can be to recover and exploit secret signing or obtain 
encryption keys used during the software update process. The latter might enable disabling firewalls 
or switching ECUs into programming mode to enable update capabilities. Additionally, attackers 
might want to decrypt software files to reverse engineer and gain insight into its contents affecting 
the intellectual property and try to find vulnerabilities, e.g., through analysis of safety-critical 
systems. Thus, the attacker’s ultimate goal is to exploit the software update system so that malicious 
or unauthorized software providing additional or altered functionality reaches the in-vehicle system, 
for instance, to gain and maintain remote persistence. 
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Thirteen security requirements were identified which are mapped against 8 security goals and 21 
security directives. We further use Goal Structuring Notation (GSN) to present proofs for claims in a 
graphical manner to map these claims to the general requirements, as illustrated in the following 
figure: 

  

 

 

For instance, Security Goal SG1, Secure communication, is fulfilled by requirements R1 and R11. 
Requirement R1 deals with infrastructure and communication: “The infrastructure, cryptographic 
algorithms, and key material shall follow best security practices. For instance, communication 
between backend entities shall encrypt communication and use proper authentication between 
entities. The same requirements shall be considered for in-vehicle entities directly related to the 
update framework.” R1 should then be reinforced by implementing the detailed directives D1 
Authentication and D2 Encryption, mitigating threats P1-P6, R, and C1-C3 (not shown here in these 
figures). 

More details and how packet validation and cryptographic material is derived and used, can be found 
in the paper. 
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EXTRACT FROM PUBLICATION 

Abstract – A modern vehicle is no longer merely a transportation vessel. It has become a complex 
cyber-physical system containing over 100M lines of software code controlling various functionalities 
such as safety-critical steering, brake, and engine control. The amount of code is anticipated to rise 
to around 300M lines of code by 2030. Furthermore, even well-tested code will contain more than 
one bug per 1000 lines of code. Thus, it can be expected that there will be around 100k bugs in a 
modern vehicle and around 300k bugs in a few years, where some might have a safety-critical 
impact. Automotive companies are transforming into software companies with more software 
developed in-house. The ability to patch vulnerabilities hastily and securely has become vital and is a 
prerequisite when securing modern cars. UN Regulation No. 156 and the ISO 24089 emphasize the 
ability to update vehicle software securely. 

Consequently, we focus on securing the vehicle software update process. Our contributions include 
defining an attacker model and general security requirements. We further map these requirements 
to common security goals and directives to ensure broad coverage. Additionally, we present UniSUF, 
a secure and versatile approach to vehicle software updates. We identify entities involved during 
vehicle software updates, perform a threat assessment, and map the identified threats to security 
goals and requirements. The results highlight a secure framework with high industrial relevance that 
can be used as a reference architecture to guide securing similar software update systems within 
automotive and related areas such as cyber-physical systems, internet-of-things, and smart cities. 

 

Conclusions – Modern vehicles are complex systems containing more than 100M lines of software 
code controlling various functionality including safety-critical functions and get increasingly 
vulnerable when adding connectivity. Thus, ensuring hastily and secure software updates to patch 
vulnerabilities is imperative.  We have introduced UniSUF, identified entities involved in the 
distribution and execution during vehicle software updates, provided an attacker model, performed a 
threat assessment, and elaborated on mitigation mechanisms. We have identified general security 
requirements for vehicle software updates and mapped them to common security goals and 
directives further visualized with the Goal Structuring Notation (GSN). The results show that UniSUF 
fulfills the stated security goals and provides a secure and unified vehicle software update framework 
that can serve as a detailed reference architecture.  We believe our results are valuable not only for 
automotive software update architects. We also see high relevance for engineers in related areas, 
such as cyber-physical systems, internet-of-things, and smart cities, guiding the design of secure 
software update solutions. 
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7.2 UniSUF: a unified software update framework for vehicles utilizing isolation 
techniques and trusted execution environments [26] 

Paper presented at the 19th ESCAR Europe conference 2021, pp. 86-100. 

Authors: K. Strandberg, D Kengo Oka, T. Olovsson 

The complete text is available after registration at https://www.escar.info/history/escar-
europe/escar-europe-2021-lectures-and-program-committee.html  

 

Considering the different existing use cases for vehicle software updates, such as over-the-air, using a 
workshop computer, at factory production, or with a diagnostic update tool, each use case typically 
has its own approach which causes complexity. Moreover, new use cases for software updates need 
to be considered with future demands to support 3rd party component updates.  Therefore, to 
simplify, reduce costs, allow flexibility, and to make the update process manageable, all while 
considering security aspects, we propose a unified and versatile approach to handle all 
listed/mentioned use cases.   

After reviewing the above-mentioned use cases, the following constraints and conditions are defined 
for a unified software update framework: 

 Support for online updates (software update files and/or cryptographic credentials/operations 
require online access).  UniSUF: A Unified Software Update Framework for Vehicles. 

 Support for offline updates (software update files and cryptographic credentials/operations 
are accessible offline). 

 Should not rely on additional input for cryptographic keys or installation instructions, e.g., from 
a diagnostic update tool (i.e., all data needed for a complete software update is securely 
encapsulated into one single file and no additional input is required). 

 No dependency on the data distribution model (i.e., software update files can be provided 
through different means, and it does not matter how they are distributed to the vehicle). 

 No dependency on software update storage location (i.e., software update files should be 
independently protected regardless of where they are stored). 

 Flexible and modular to support 3rd party component updates.  We have taken these 
constraints and conditions into consideration when designing a software update framework to 
allow for a unified and versatile approach to support different use cases. 

 

Both data handling, signing, and verification of update package contents in the backend system and 
the data distribution to the vehicle is considered. The solution is rather complex although reasonably 
simple to understand its main functionality and how the different components are tied together. The 
figure below shows data distribution in the backend: 
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More details and how packet validation and cryptographic material is derived and used, can be found 
in the paper. 

 

EXTRACT FROM PUBLICATION 

Abstract – Today's vehicles depend more and more on software and can contain over 100M lines of 
code controlling many safety-critical functions, such as steering and brakes. Increased complexity in 
software inherently increases the number of bugs affecting vehicle safety-critical functions. 
Consequently, software updates need to be applied regularly. Current research around vehicle 
software update solutions is lacking necessary details for a versatile, unified and secure approach 
that covers various update scenarios, e.g., over-the-air, with a workshop computer, at factory 
production or using a diagnostic update tool. We propose UniSUF, a Unified Software Update 
Framework for Vehicles, well aligned with automotive industry stakeholders. All data needed for a 
complete software update is securely encapsulated into one single file. This vehicle-unique file can 
be processed in multitudes of update scenarios and executed without any external connectivity since 
all data is inherently secured.  To the best of our knowledge, this comprehensive, versatile, and 
unified approach cannot be found in previous research and is a contribution to an essential 
requirement within the industry for handling the increasing complexity related to vehicle software 
updates. 
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Conclusions – UniSUF is made to accommodate various scenarios for the automotive domain by 
encapsulating needed data into one single file, a Vehicle Unique Update Package (VUUP). This 
vehicle-unique file can be processed within a vehicle ECU, using a workshop computer, at factory 
production, with a diagnostic update tool, or in other compositions. Moreover, the complete update 
process can be performed without any external communication dependencies since all files are 
inherently secured. A continuous secure software update process is a prerequisite for facilitating 
vehicle resilience towards cyberattacks in a rapidly changing environment. We believe our 
contributions in this paper can facilitate further research in this area, towards securing the 
connected car. 
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8 Endurance, verification and validation 

Detection of unwanted activities and deviation from normal behavior may be detected by regular IDS 
systems. Trusted components can be used to evaluate functionality and behavior and it can make IDS 
systems hard to compromise. In addition, cloud-based IDS systems may be deployed and protect 
complete fleets and prevent problems from spreading. It is not obvious that a vehicle can or should 
be trusted to evaluate its own state and whether it is fully functional. If it is compromised, internal 
IDS systems may be failing to see the problem due to the sophistication of an attack, or the IDS 
system(s) may even be compromised as well. We have therefore taken a different approach to this 
problem to make sure misbehaving and compromised vehicles are detected and either fixed or 
removed from traffic. The methodology is based on peer assessment of vehicles, where vehicles 
assess each other after they have been interacting with each other and upload their verdicts to the 
cloud. This approach makes it possible to verify vehicle behavior and detect changes over a longer 
time and to follow each vehicle’s behavior. Changes do not necessarily have to do with cyber-attacks, 
but the system will also react to changes in behavior due to changes in vehicle surroundings that may 
call for software or hardware updates. 

8.1 V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework for 
Automotive Systems [8] 

Paper presented at the 16th International Conference on Availability, Reliability and Security ARES 
2021. New York, NY, USA. 

Authors: T. Rosenstatter, T. Olovsson, and M. Almgren 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Vehicles know quite a lot about each other by observing their behavior, and after interacting with 
another vehicle, for example in an intersection or after having participated in a platoon, they can give 
a verdict about the other vehicles by assigning them trust scores. If a vehicle misbehaves, for 
example transmits a speed that is obviously wrong, a position that does not match what other 
vehicles observe, or if it in any other way behaves unexpectedly or aggressively, the trust score 
indicates this. There are many scenarios that can be covered by this approach: 

Scenario 1 – Unauthorized firmware manipulation: 

Ex.1 Manipulation of the firmware such that the owner is able to send traffic congestion 
warning messages at will to reduce traffic on a desired road segment. 

Ex.2 Manipulation of the firmware such that the automated vehicle drives faster than the 
current speed limit. Ex.3 Manipulation of the firmware such that an attacker can disrupt 
traffic by suppressing relaying of messages, spoofing warning messages or flooding the 
VANET with erroneous messages. 

Scenario 2 – HW/SW failures: 

Ex.4 A lidar sensor or camera is experiencing a fault and the vehicle is thus not able to 
perceive its environment properly.  

Scenario 3 – Legitimate SW/HW updates: 
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Ex.5 After a legitimate firmware update, the automated vehicle drives too fast in certain road 
conditions, e. g., when the road is slippery, since the vehicle perceives the current driving 
conditions incorrectly. 

Ex.6 A defective hardware component is replaced in an authorized workshop and causes 
compatibility problems resulting in a misbehavior while driving. 

Ex.7 The machine learning algorithm for identifying traffic signs has been updated and now 
causes a misclassification of speed limit signs. 

The figure below shows three vehicles interacting with each other where vehicle 3 assigns a trust 
score for all three: 

These trust scores are then uploaded to the cloud for analysis, and if many vehicles report low trust 
scores for a vehicle, it should be subject to a closer investigation for example by the OEM. The 
proposed system consists of four modules (or four steps) for how the analysis is done: 

Vehicle trust is primarily proposed in literature to overcome the difficulty of relying on information 
received via V2V communication when interacting with other automated vehicles. Related work also 
identified the potential of vehicle trust in combination with intrusion detection, however, these 
solutions are either focusing on collaborating with trusted vehicles and including the results in the 
own vehicle’s decision-making [22] or only consider packet header information in their intrusion 
detection system [23][24]. 
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We propose an anomaly detection framework that utilizes the trust scores computed by individual 
vehicles based on V2V interactions by combining them with a subsequent analysis in the cloud. The 
presented V2C Anomaly Detection framework consists of four modules dividing the tasks into (i) 
individual assessments of neighboring vehicles resulting in a trust score; (ii) aggregation of these 
individual assessments to one trust score per vehicle; (iii) detection of anomalies or changes in the 
trust score over time; (iv) further analysis using data available in the cloud to also detect similar 
anomalies in a vehicle. The advantage of using trust evaluations for detecting anomalies is twofold. 
First, these vehicle assessments are, unlike IDSs, performed by other vehicles and not by the system 
itself, which is important because the vehicle itself may not be aware of the fault or the IDS may also 
be compromised. 

Second, this framework is scalable as the computational costs for observing the trust score for each 
vehicle and triggering a detailed analysis only when changes in the score are detected, requires less 
resources than triggering a comprehensive analysis with each newly uploaded event to the cloud. For 
each module comprising this framework we define their requirements, show how the identified 
threats can be detected, provide detailed discussions about suitable techniques, and propose 
modifications if necessary. Furthermore, we identify attack scenarios which such a framework can 
detect and discuss its applicability in a detailed discussion based on a use case. 

 

EXTRACT FROM PUBLICATION 

ABSTRACT – Vehicles have become connected in many ways. They communicate with the cloud and 
will use Vehicle-to-Everything (V2X) communication to exchange warning messages and perform 
cooperative actions such as platooning. Vehicles have already been attacked and will become even 
more attractive targets due to their increasing connectivity, the amount of data they produce and 
their importance to our society. It is therefore crucial to provide cyber security measures to prevent 
and limit the impact of attacks. 

As it is problematic for a vehicle to reliably assess its own state when it is compromised, we 
investigate how vehicle trust can be used to identify compromised vehicles and how fleet-wide 
attacks can be detected at an early stage using cloud data. In our proposed V2C Anomaly Detection 
framework, peer vehicles assess each other based on their perceived behavior in traffic and V2X-
enabled interactions and upload these assessments to the cloud for analysis. This framework consists 
of four modules. For each module we define functional demands, interfaces and evaluate solutions 
proposed in literature allowing manufacturers and fleet owners to choose appropriate techniques. 
We detail attack scenarios where this type of framework is particularly useful in detecting and 
identifying potential attacks and failing software and hardware. Furthermore, we describe what basic 
vehicle data the cloud analysis can be based upon. 

 

CONCLUSION – In this paper, we present the V2C Anomaly Detection framework, which is a novel 
framework combining the assessment of Vehicle-to-Vehicle communication and the perceived 
quality of cooperative interactions between vehicles resulting in a trust score, with vehicle data in 
the cloud. The peer evaluation of vehicle behavior allows identification of local anomalies and attacks 
even when important security controls such as in-vehicle IDSs fail to detect them, for example due to 
an attacker exploiting a vulnerability, an insider or a firmware upgrade causing unintended behavior. 
Furthermore, the analysis of cloud data makes it possible to detect and identify patterns of 
anomalies and intrusions on a wider scale such as on a fleet level. Ultimately, the advantage of the 
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V2C Anomaly Detection framework lies in the fact that it is designed to reduce the computational 
costs in the cloud by triggering a cloud analysis once the combined trust evaluation performed by 
independent vehicles shows a significant change, i. e., a changed behavior resulting in a decline of 
the trust score. 

We have provided scenarios focusing on persistent threats to explain the requirements for each 
module of the V2C Anomaly Detection framework in terms of functionality, inputs, and outputs. We 
also provide an initial identification and detailed discussions to aid in choosing or adapting 
techniques for each module so that a vehicle manufacturer, fleet owner or other actor in the cloud 
can select and adapt relevant techniques depending on the available data. 
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9 Performance of communication 

Reliable communication between vehicles and the infrastructure is essential for many functions. We 
have studied byzantine faults (or failures) in communication where components may silently fail 
without this being recognized by others. It affects for example consensus protocols and algorithms 
where two or more components all need to be in a known state. It is essential in many decisions 
made by communicating vehicles (V2X communication), but also inside a vehicle where decisions 
need to be made in a consistent way. Secure software updates can be one special case, where all or 
no ECUs should be updated to the same known state. Other examples are fault tolerant components 
in the vehicle which may fail and require a, for the driver, invisible reconfiguration and reassignment 
of functions between ECUs. 

Fault-tolerant distributed systems are known to be hard to design and verify. High-level 
communication primitives can facilitate such complex challenges. These primitives can be based on 
low-level ones, e.g., the one that allows processes to send a message to only one other process at a 
time. Hence, when an algorithm wishes to broadcast message m to all processes (or ECUs), it can 
send m individually to every other process. But, if the sender fails during this broadcast, perhaps only 
some of the processes have received m. Even in the presence of network level support for 
broadcasting or multicasting, failures can cause similar inconsistencies. To simplify the design of 
fault-tolerant distributed algorithms, such inconsistencies need to be avoided. Fault-tolerant 
broadcasts can simplify the development of fault-tolerant distributed systems, e.g., State Machine 
Replication and Set-Constrained Delivery Broadcast. The weakest variant, Reliable Broadcast, lets all 
non-failing processes agree on the set of delivered messages, including all messages they have 
broadcast. We aim to design a reliable broadcast that is more fault-tolerant than the current state-
of-the-art. 

We have studied a well-known communication abstraction called Byzantine Reliable Broadcast (BRB). 
This abstraction is central in the design and implementation of fault-tolerant distributed systems, as 
many fault-tolerant distributed applications require communication with provable guarantees on 
message deliveries. Our study focuses on fault-tolerant implementations for message-passing 
systems that are prone to process failures, such as crashes and malicious behaviors. 

 

9.1 Self-stabilizing Byzantine-Tolerant Recycling [30] 

Paper presented at the 25th International Symposium on Stabilization, Safety, and Security of 
Distributed Systems, SSS 2023, Jersey City, USA. 

Authors: C. Georgiou, M. Raynal, E. Schiller 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Abstract – Numerous distributed applications, such as cloud computing and distributed ledgers, 
necessitate the system to invoke asynchronous consensus objects for an unbounded number of 
times, where the completion of one consensus instance is followed by the invocation of another.  
With only a constant number of objects available, object reuse becomes vital. We investigate the 
challenge of object recycling in the presence of Byzantine processes, which can deviate from the 
algorithm code in any manner. Our solution must also be self-stabilizing, as it is a powerful notion of 
fault tolerance. Self-stabilizing systems can recover automatically after the occurrence of arbitrary 
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transient faults, in addition to tolerating communication and (Byzantine or crash) process failures, 
provided the algorithm code remains intact. We provide a recycling mechanism for asynchronous 
objects that enables their reuse once their task has ended, and all non-faulty processes have 
retrieved the decided values.  This mechanism relies on synchrony assumptions and builds on a new 
self-stabilizing Byzantine-tolerant synchronous multivalued consensus algorithm, along with a novel 
composition of existing techniques. 

Conclusions – We have presented an SSBFT algorithm for object recycling. Our proposal can support 
an unbounded sequence of SSBFT object instances. The expected stabilization time is in O(t) 
synchronous rounds. We believe that this work is preparing the groundwork needed to construct 
SSBFT Blockchains. As a potential avenue for future research, one could explore deterministic 
recycling mechanisms, say by utilizing the Dolev and Welch approach to SSBFT clock synchronization, 
to design an SSBFT SIG-index. However, their solution has exponential stabilization time, making it 
unfeasible in practice. 

 

9.2 Self-stabilizing Byzantine Fault-Tolerant Repeated Reliable Broadcast [29] 

Paper published in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 206-221, 9783031210167 (ISBN). 

Authors: R. Duvignau, M. Raynal, E. Schiller 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Abstract – We study a well-known communication abstraction called Byzantine Reliable Broadcast 
(BRB). This abstraction is central in the design and implementation of fault-tolerant distributed 
systems, as many fault-tolerant distributed applications require communication with provable 
guarantees on message deliveries. Our study focuses on fault-tolerant implementations for message-
passing systems that are prone to process failures, such as crashes and malicious behaviors. 

At PODC 1983, Bracha and Toueg, in short, BT, solved the BRB problem. BT has optimal resilience 
since it can deal with up to t < n/3 Byzantine processes, where n is the number of processes. The 
present work aims at the design of an even more robust solution than BT by expanding its fault-
model with self-stabilization, a vigorous notion of fault-tolerance. In addition to tolerating Byzantine 
and communication failures, self-stabilizing systems can recover after the occurrence of arbitrary 
transient faults. These faults represent any violation of the assumptions according to which the 
system was designed to operate (as long as the algorithm code remains intact). 

We propose, to the best of our knowledge, the first self-stabilizing Byzantine fault-tolerant (SSBFT) 
solution for repeated BRB (that follows BT’s specifications) in signature-free message-passing 
systems. Our contribution includes a self-stabilizing variation on a BT that solves asynchronous 
single-instance BRB. We also consider the problem of recycling instances of single-instance BRB. Our 
SSBFT recycling for time-free systems facilitates the concurrent handling of a predefined number of 
BRB invocations and, this way, can serve as the basis for SSBFT consensus. 

Conclusions – To the best of our knowledge, this paper presents the first SSBFT algorithms for IRC 
and repeated BRB for hybrid asynchronous/timefree systems. As in BT, the SSBFT BRB algorithm 
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takes several asynchronous communication rounds of O(n2) messages per instance whereas the IRC 
algorithm takes O(n) messages but requires synchrony assumptions. 

The two SSBFT algorithms are integrated via specified interfaces and message piggybacking. Thus, 
our SSBFT repeated BRB solution increases BT’s message size only by a constant per BRB, but the 
number of messages per instance stays similar. The integrated solution can run an unbounded 
number of (concurrent and independent) BRB instances. The advantage is that the more 
communication-intensive component, i.e., SSBFT BRB, is not associated with any synchrony 
assumption. Specifically, one can run δ concurrent BRB instances, where δ is a parameter for 
balancing the trade-off between fault recovery time and the number of BRB instances that can be 
used (before the next δ concurrent instances can start). The above extension mitigates the effect of 
the fact that, for the repeated BRB problem, muteness detectors are used and mild synchrony 
assumptions are made in order to circumvent well-known impossibilities. Those additional 
assumptions are required for the entire integrated solution to work. To the best of our knowledge, 
there is no proposal for a weaker set of assumptions for solving the studied problem in a self-
stabilizing manner. 

We hope that the proposed solutions, e.g., the proposed recycling mechanism and the hybrid 
composition of time-free/asynchronous system settings, will facilitate new SSBFT building blocks. 

 

9.3 Brief Announcement: Self-stabilizing Total-Order Broadcast [28] 

Paper published in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), Vol. 13751 LNCS s. 358-363, 9783031210167 (ISBN). 

Authors: O. Lundström, M. Raynal, E. Schiller 

The complete text is available online and is not duplicated here for copyright reasons. 

 

Abstract – Our study aims at the design of an even more reliable solution. We do so through the 
lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to node and 
communication failures, self-stabilizing algorithms can recover after the occurrence of arbitrary 
transient faults; these faults represent any violation of the assumptions according to which the 
system was designed to operate (as long as the algorithm code stays intact). This work proposes the 
first (to the best of our knowledge) self-stabilizing algorithm for total-order (uniform reliable) 
broadcast for asynchronous message-passing systems prone to process failures and transient faults. 
As we show, the proposed solution facilitates the elegant construction of self-stabilizing state-
machine replication using bounded memory. 

Discussion – Our study aims at the design of an even more reliable solution. We do so through the 
lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to node and 
communication failures, self-stabilizing algorithms can recover after the occurrence of arbitrary 
transient faults; these faults represent any violation of the assumptions according to which the 
system was designed to operate (as long as the algorithm code stays intact). This work proposes the 
first (to the best of our knowledge) self-stabilizing algorithm for total-order (uniform reliable) 
broadcast for asynchronous message-passing systems prone to process failures and transient faults. 
As we show, the proposed solution facilitates the elegant construction of self-stabilizing state-
machine replication using bounded memory. 
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