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ABSTRACT
Vehicles have become connected in many ways. They communicate
with the cloud and will use Vehicle-to-Everything (V2X) commu-
nication to exchange warning messages and perform cooperative
actions such as platooning. Vehicles have already been attacked and
will become even more attractive targets due to their increasing
connectivity, the amount of data they produce and their impor-
tance to our society. It is therefore crucial to provide cyber security
measures to prevent and limit the impact of attacks.

As it is problematic for a vehicle to reliably assess its own state
when it is compromised, we investigate how vehicle trust can be
used to identify compromised vehicles and how fleet-wide attacks
can be detected at an early stage using cloud data. In our proposed
V2C Anomaly Detection framework, peer vehicles assess each other
based on their perceived behavior in traffic and V2X-enabled inter-
actions, and upload these assessments to the cloud for analysis. This
framework consists of four modules. For each module we define
functional demands, interfaces and evaluate solutions proposed
in literature allowing manufacturers and fleet owners to choose
appropriate techniques. We detail attack scenarios where this type
of framework is particularly useful in detecting and identifying
potential attacks and failing software and hardware. Furthermore,
we describe what basic vehicle data the cloud analysis can be based
upon.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puter systems organization→ Embedded systems.
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1 INTRODUCTION
To increase traffic safety and efficiency, Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication is needed to en-
able the sensing of objects and entities that are out of the vehicle’s
sight; to allow cooperation between vehicles to increase efficiency
such as in platooning [8] and to receive warnings about road con-
ditions, e. g., slippery roads, traffic accidents and road works ahead.
In addition, most vehicles also have cellular access to the Internet
to provide comfort functions such as remote unlock/lock and to
receive essential software updates over the air.

The feasibility of cyber attacks against vehicles that can poten-
tially lead to catastrophic events was demonstrated already in 2011.
Checkoway et al. [6] analyzed a modern vehicle for security vulner-
abilities and identified several potential attacks requiring physical
access, but also attacks possible through short-range wireless con-
nectivity, e. g., Bluetooth, and long-range wireless connectivity such
as cellular networks. In 2015 Miller and Valasek [26] demonstrated
a remote exploit through the cellular network allowing them to
remotely control a vehicle including safety critical functions. A
more recent report from 2020 revealed several vulnerabilities allow-
ing remote control of Mercedes-Benz vehicles [39]. Remote attacks
pose a significantly higher risk to the safety of road users as they
do not require physical access to vehicles and can be performed
from anywhere without leaving significant traces.

Security measures have been investigated and proposed for var-
ious parts of the automotive system, ranging from intrusion de-
tection for the in-vehicle network (e. g., [27, 29]), secure commu-
nication for all networked communications and secure boot for
Electronic Control Units, ECUs (e. g., [33]). These methods are im-
portant to protect and secure an individual vehicle and its occupants,
however, they are not foolproof nor enough to identify wide-spread
attacks and anomalies on a fleet level.

Motivation. Analyzing all available data in the cloud when an
event from a single vehicle is received is not feasible due to the
potentially large number of vehicles in the fleet and the associated
computational costs. In general, it is also problematic for a system,
i.e., the vehicle such as a passenger car, truck or bus, to reliably
assess its own state when it is compromised. Therefore, a framework
that allows finding anomalies and intrusions in automotive systems
in its entirety is needed. The establishment of trust between vehicles
interacting via V2V communication is of particular interest as it
enables the assessment of a vehicle’s behavior, especially in safety-
critical situations, not just by the vehicle itself but also by the
surrounding vehicles.

Contributions. In this paper, we present V2C Anomaly Detection,
an overall framework that combines the detection of anomalies
by evaluating V2V interactions using trust scores with the analysis
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in the cloud. We divide this framework in modules and for each
module, we survey existing solutions, investigate how to implement
them, propose modifications when necessary and evaluate them.
During the design we put special focus on scalability of the frame-
work and the feasibility to detect attacks and abnormal behavior.
We further argue that a framework like V2C Anomaly Detection is
necessary and complements existing security controls and internal
Intrusion Detection Systems (IDSs), as it is based on vehicles inde-
pendently evaluating each other rather than only evaluating their
own internal state.

After giving an overview of the system design and attacks in Sec-
tion 2, we present relatedwork in Section 3, review existingmethods
for each module in Section 4, and evaluate suitable methods and,
when necessary, suggest modifications in Section 5. Ultimately, we
show how to apply and discuss the V2C Anomaly Detection frame-
work based on a detailed use case in Section 6 and then conclude
the paper in Section 7.

2 OVERVIEW
Our goal is to utilize techniques in both individual vehicles and
in the cloud in order to identify compromised vehicles. Security
systems inside these compromised or malfunctioning vehicles may
not be able to detect the misbehavior themselves and therefore a
peer evaluation of independent systems is necessary. In addition,
the analysis in the cloud with access to data about each vehicle in
a fleet allows an early detection of large-scale attacks.

We first discuss the security threats and attack scenarios that
the proposed framework should be able to detect in Section 2.1. An
overview of the structure and the modules of the V2C Anomaly
Detection framework using V2V and cloud data is presented in
Section 2.2. Thereafter, an adversary model and assumptions are
presented in Section 2.3.

2.1 Attack Scenarios
The following three attack scenarios highlight the need for trust-
based anomaly detection in the cloud: (1) when firmware is success-
fully modified without triggering an alert from other monitoring
software in the vehicle; (2) when hardware/software failures occur
that cause an incorrect perception or behavior; and (3) when failed
updates or faulty software cause functional disturbances. These
scenarios and the examples listed in Table 1 emphasize that the
V2C Anomaly Detection framework focuses not only on detecting
intrusions caused by unauthorized entities, it also aims at detecting
behavioral changes caused by intentional and unintentional, yet
authorized, modifications as well as random faults. These scenarios
will be further used in Section 5.1 to evaluate the applicability of
proposed trust and reputation models.

Scenario 1 – Unauthorized Firmware manipulation. Someone such
as the owner, an employee at a workshop or a remote attacker,
performs unauthorized modifications of the firmware in order to
(i) suppress relaying of messages in the Vehicular Ad-hoc NETwork,
VANET (blackhole attack), (ii) modify or falsify warning messages
for events such as traffic accidents, traffic jams and other road
conditions (masquerading attack) or (iii) interact with other vehi-
cles during cooperative scenarios, e. g., platooning, in a selfish or

Table 1: Examples for the identified scenarios.

Ex. # Description

Scenario 1 – Unauthorized firmware manipulation

Ex.1 Manipulation of the firmware such that the owner is able to
send traffic congestion warning messages at will to reduce
traffic on a desired road segment.

Ex.2 Manipulation of the firmware such that the automated vehi-
cle drives faster than the current speed limit.

Ex.3 Manipulation of the firmware such that an attacker can dis-
rupt traffic by suppressing relaying of messages, spoofing
warning messages or flooding the VANET with erroneous
messages.

Scenario 2 – HW/SW failures

Ex.4 A lidar sensor or camera is experiencing a fault and the
vehicle is thus not able to perceive its environment properly.

Scenario 3 – Legitimate SW/HW updates

Ex.5 After a legitimate firmware update, the automated vehicle
drives too fast in certain road conditions, e. g., when the road
is slippery, since the vehicle perceives the current driving
conditions incorrectly.

Ex.6 A defect hardware component is replaced in an authorized
workshop and causes compatibility problems resulting in a
misbehavior while driving.

Ex.7 The machine learning algorithm for identifying traffic signs
has been updated and now causes a misclassification of speed
limit signs. The possibility of attacks exploiting machine
learning algorithms for the identification of traffic signs has
also been demonstrated by Sitawarin et al. [37]. Thus, an
update of such systems may even open new attack vectors.

malicious way to cause disruption of the traffic flow or even an
accident.

Scenario 2 – HW/SW failures. Hardware or software faults occur
and cause the vehicle to react improperly to the situation.

Scenario 3 – Legitimate SW/HW updates. The vehicle manufac-
turer pushes an over-the-air update for one of the computing units,
ECUs, in a vehicle or an authorized workshop replaces hardware
and causes a degraded or unintended functionality due to the com-
plexity of an automotive system and lack of sufficient testing. Ex-
amples of such unintended functionality are inaccurate or wrong
sensor readings and changes in the behavior when interacting with
other vehicles.

2.2 System Design
The goal of our V2C Anomaly Detection framework is to identify
anomalous and malicious behavior in a fleet by having vehicles
evaluate each other. As a result, we identified four tasks: (i) indi-
vidually assess vehicle trust which consequently has to indicate
anomalous behavior; (ii) combine these trust evaluations; (iii) de-
tect a change in the combined trust evaluations showing that the
vehicle’s behavior negatively changed; and (iv) analyzing cloud
data to identify similar patterns in the fleet. Each task is assigned to
a module as shown in Figure 1. Module 1 evaluates its own and the
behavior of other vehicles based on V2V data and the cooperation
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Figure 1: Structure of V2C Anomaly Detection.

with them. Each vehicle performs this individual peer evaluation
which results in a trust score and uploads the average of the trust
scores for a certain period, e. g., per day, for each evaluated vehicle
to the cloud. These trust scores reported by the vehicle fleet are
combined to one trust score per vehicle inmodule 2. Combining the
trust scores in the cloud has the advantages that no additional com-
putation for combining trust scores is required by the vehicles and
that no additional messages need to be exchanged in the VANET.
Module 3 observes the trust scores over time and raises an alert
when the trust score of a specific vehicle decreases, indicating that
the behavior of the vehicle has negatively changed. Module 4 then
analyzes the available data about the affected vehicle in the cloud
to find the cause and allow an early detection in the fleet.

Since this is a framework providing flexibility for selecting and
adapting suitable techniques for each module, we provide examples
and show how the V2C Anomaly Detection framework can be used.
Figure 2 shows the required information as input, the output each
module produces and links to the respective sections where this is
further discussed.

2.3 Adversary Model and Assumptions
Attackers may gain complete control of a vehicle, e. g., through
attack scenarios described in [14], allowing them to remotely con-
trol it or alter the firmware of important ECUs to perform attacks
as mentioned in Section 2.1. It is reasonable to assume that many
attacks can be perform stealthy and will only be detected through
the behavior of the vehicle.

We assume that the majority of vehicles are honest and report
correct trust scores, however, a minority of compromised vehicles
may collude. The trust score calculated from the data and behavior
involving V2V communication can also be correlated to the data
about the vehicles located in the cloud.

3 RELATEDWORK
In this section we list related work in regard to this framework,
while Section 4 reviews individual methods for each module. The
introduction of VANETs and subsequent applications introduce
additional security and safety challenges. Cryptographic solutions
build the base for secure communication to provide confidentiality,
integrity and availability. Nevertheless, dishonest or compromised
vehicles need to be considered as well. VANET-specific attacks

V2V communication/interactions

Vehicle perception

Module 1: Trust evaluation (Section 5.1)

TIj,j , TIi,j , Ci,j

Trust score and confidence value of

vehicle j experienced by vehicle i

Module 2: Combining trust scores (Section 5.2)

TIj aggregation of trust scores TIi,j
TIj,j own perceived score by vehicle j

Module 3: Detecting change in the behavior (Section 5.3)

alert(Vj) Cloud data

(Section 5.5)

Module 4: Data Analysis in the cloud (Section 5.4)

Identification of anomalies

in the fleet

Figure 2: Modules of the V2C Anomaly Detection framework
including their inputs and outputs they produce.

include spoofing locations of vehicles, sending altered or dropping
warning messages and dropping all messages.

Trust and reputation models for evaluating vehicles based on
V2V interactions have been proposed in literature [20] to identify
vehicles that provide false or incorrect information to others and
thus risking the safety of the passengers. Proposed solutions focus
on how to evaluate the correctness of reported events, how to verify
the correctness of sensor data, how to assess the interaction during
cooperative events such as platooning and/or how to distribute this
knowledge between the vehicles. The resulting evaluation, a trust
or reputation score, is used for decision-making by the automated
vehicle. Examples are decisions about whether to trust reported
warnings, e. g., road accident ahead, received from a particular ve-
hicle. Guo et al. [17] propose an approach that verifies information
received via V2V in form of an IDS whose results are further used
for decision-making. Other solutions on collaborative intrusion
detection [28, 35] consider only packet headers and parameters,
such as packet drop rate and transfer delay, and investigate ways
to exchange this information between neighboring vehicles.

To the best of our knowledge there is no similar work to the
V2C Anomaly Detection framework, which deals with how trust
scores can be utilized in a more holistic setting in order to detect
large-scale attacks and anomalies by uploading and performing
cloud-based analyses.

4 EXISTING METHODS
The following sections survey existing methods relevant for each
module. In Section 5 we discuss why and how these methods can
be applied and motivations when modifications are necessary.

4.1 Trust and Reputation Models
The main task for module 1 is to evaluate vehicle behavior based on
V2V data received and ways to assess cooperative tasks performed
together. We use a recent survey on trust solutions for VANETs,
namely Hussain et al. [20], as a base and further perform a search
on Google Scholar to find additional trust and reputation-based
models. We briefly present a diverse set of solutions to give an
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overview of methods found in literature, but refer to Hussain et
al. [20] for a more complete overview of solutions dealing with
trust or reputation in VANETs.

The reputation model presented by Engoulou et al. [11] verifies
the vehicle id, width and length of the vehicle, driving direction,
location, speed, acceleration, transmission rate and message fre-
quency. Each of these parameters is either correct (1) or false (0)
and the resulting sum is the proposed reputation score. This model
lacks the evaluation of the other vehicles’ cooperative behavior, for
example, if the vehicles provide correct warning messages and how
they behave during cooperative scenarios such as platooning.

Soleymani et al. [38] make use of fuzzy logic to model trust.
Three modules, such as an experience module which evaluates
the interactions, a plausibility module which verifies the location
of the sender, and an accuracy level module, result in one of the
three levels: high, medium or low. A fuzzy inference engine further
defines the combinations in which the trust level is acceptable and
not-acceptable. The approach of using fuzzy logic is interesting,
however, for our proposed anomaly detection frameworkwe require
a more detailed representation of trust/reputation.

A trust system focusing on modeling the trust in the surrounding
vehicles as well as the ego vehicle is presented by Rosenstatter and
Englund [32]. The authors identify trust evaluation criteria for the
own (ego) vehicle, all surrounding vehicles including more specific
criteria for the vehicle in front, as this vehicle can be additionally
verified with the vehicle’s front sensors. Unlike other proposed
solutions, this system has been evaluated with data from a real
environment consisting of several Vehicle-to-Everything (V2X)-
enabled vehicles. In addition, the presented trust model is flexible
for adaptations, which is also shown by the authors’ detailed discus-
sions of factors that can be considered for evaluating the behavior
of a vehicle.

Bißmeyer et al. [4] propose a trust score based on plausibility
checks, e. g., reported location, using particle filters. An aging factor
is introduced to define ratio of the impact of a new trust score
compared to the past trust scores. The authors also propose to
apply an additional particle filter to the ego vehicle to verify the
trust in the own system as the ego vehicle acts as the reference for
evaluating the other vehicles. An extension of the proposed model
would be necessary to cover also an evaluation of the behavior of
other vehicles during cooperative scenarios such as platooning.

In Section 5.1 we return to trust models and give more details
on the demands on the trust models and how they can be applied
in the context of the V2C Anomaly Detection framework.

4.2 Combining Trust Scores
The combination of knowledge, i. e., the trust scores 𝑇 𝐼𝑖, 𝑗 , reported
by individual vehicles can be carried out in various ways by mod-
ule 2. Overall, there are two distinct concepts for combining trust
scores, (i) calculating the mean, e. g., weighted, arithmetic or geo-
metric, and (ii) usingDempster-Shafer theory (DST) of evidence [34],
more specifically, Dempster’s rule of combination.

Arithmetic and Geometric Mean. The trust scores reported by
each vehicle need to be combined in such a way that it compen-
sates for a minority of dishonest vehicles. The arithmetic mean is

generally used for data with no significant outliers whereas the geo-
metric mean is used when the difference between the data points
is logarithmic.

The arithmetic mean, for instance, is used by Engoulou et al. [11]
to calculate the indirect trust, an aggregation of the trust scores of
vehicle 𝑗 received from other vehicles. Furthermore, the authors
use a weighted average for combining the local trust, calculated by
the own system for vehicle 𝑗 and the indirect trust. Rosenstatter
and Englund [32] also use the weighted average for the calculation
of the combined trust score reflecting the current situation.

Halabi and Zulkernine [18] propose a cooperative game model
for preventing malicious vehicles from entering a vehicle coalition.
The authors argue for using the product of the trust scores (𝑇 𝐼𝑖, 𝑗 )
when computing the trust in a vehicle group to increase the impact
of low trust scores. A model using the geometric mean is also pre-
sented by Kerrache et al. [22]. The described trust model evaluates
only binary events and combines the received trust ratings using
geometric mean, however, the authors do not provide any reasoning
for choosing the geometric mean over the arithmetic mean.

Dempster-Shafer Theory. DST is used in situations which re-
quire the combination of evidence reported by several (unreliable)
observers. Chen and Venkataramanan [7] present how DST can be
applied in the context of intrusion detection in VANETs. The au-
thors argue that Bayesian inference is less suited for such a use as it
requires the complete knowledge of prior probabilities, which often
need to be estimated in practice. DST, however, handles the lack of
a complete probabilistic model by introducing belief and plausibility
instead of probabilities. Chen and Venkataramanan highlight the
difference with the following example: Node A is trustworthy with
a probability of 0.8 respectively untrustworthy with probability
0.2 and reports that node S is trustworthy. In the event that A is
indeed trustworthy, the claim that S is trustworthy is accurate, but
A being not trustworthy, does not automatically imply that A is
inaccurate – it says that the claim of A has 0.8 degrees of belief
for S being trustworthy and 0 (not 0.2) degrees of belief that S is
untrustworthy [7].

Combining trust or reputation scores reported by several vehicles
using DST has been proposed in several models. For instance, Zhang
et al. [40] use the computed reputation value per vehicle as degree
of belief for either trusting or distrusting a vehicle. A unit in the
cloud, a so-called trust authority, combines these reports according
to Dempster’s rule of combination.

A similar approach as proposed by Chen and Venkataramanan,
and Zhang et al. can potentially be applied to the trust score. The
trust score could be used as evidence for vehicle 𝑗 being either trust-
worthy or untrustworthy. In this example the number of elements is
limited to three, trustworthy, untrustworthy and uncertain (either
trustworthy or untrustworthy), where each element is associated
with a belief mass value.

4.3 Detecting Change in Behavior
The combined trust score about vehicle 𝑗 , i. e., 𝑇 𝐼 𝑗 , is continuously
monitored in the cloud and a suitable technique is needed in mod-
ule 3 to detect changes in 𝑇 𝐼 𝑗 . The most basic detection technique
would be to trigger an alert when a certain threshold, for example
𝑇 𝐼 𝑗 below 0.4, is reached. Naturally, this approach does not provide



V2C: A Trust-Based Vehicle to Cloud Anomaly Detection Framework ARES 2021, August 17–20, 2021, Vienna, Austria

the flexibility of finding more subtle changes in a vehicles’ behav-
ior. Observing the mean and raising an alert as soon as the mean
deviates from a given threshold on the other hand would be very
slow and may not detect slow but steady changes.

Aminikhanghahi and Cook [2] provide a survey of change de-
tection techniques for time series data including machine learning
algorithms. They categorize existing work in unsupervised and su-
pervised methods that are further split in more detailed categories.
For this framework we require an unsupervised method that does
not require training with labeled data. Hence, we investigate the use
of two unsupervised methods, namely CUSUM and one Bayesian
detection approach.

Cumulative Sum (CUSUM) was originally proposed by Page [30]
and has been adapted over the years to, for instance, support online
detection [2, 3]. This method is able to detect small and steady
changes, as the cumulative sum of the deviations from a target value
is calculated [3]. Granjon [16] describes the CUSUM algorithm,
discusses practical considerations, such as choosing the detection
threshold, and refers to other proposed variations of CUSUM.

Bayesian approaches for change point detection have, compared
to CUSUM, the advantage of being faster; they require fewer sam-
ples for detecting change and have a lower computational cost [2].
In Section 5.3 we give more details and compare an implementation
of CUSUM and Bayesian change detection.

4.4 Data Analysis in the Cloud
First, the data needs to be analyzed in order to design and apply
appropriate anomaly detection techniques. Knowledge Discovery
in Databases (KDD) [13] is a process for gathering new knowledge
from data. This process consists of several steps starting from under-
standing the area of application to interpreting and evaluating pat-
terns found in the data, thus gaining new knowledge. Data mining
is one step in this process and supports the developer in identifying
new patterns in the data by applying specific algorithms [5, 13].

Hemdan and Manjaiah [19] provide an overview of the prin-
ciples of digital forensics, intrusion detection and suitable types
of data science methods in the context of Internet of Things. The
authors list prediction, classification, clustering and relation rule
techniques as appropriate techniques for intrusion detection. Torres
et al. [25] review machine learning techniques in the context of cy-
ber security. They provide more detail and discussions on relevant
techniques, such as self-organizing maps (SOM) and random forest.
Kang [21] focuses on anomaly detection techniques for monitoring
a product’s health, however, the overview of machine learning tech-
niques and discussions about the advantages and disadvantages of
each category of machine learning techniques is still relevant for
identifying techniques for module 4.

5 V2C ANOMALY DETECTION FRAMEWORK
We present a detailed description of each module and discuss the
applicability of methods identified in Section 4 in the following
subsections. Moreover, we propose how the selected methods can
be adapted when necessary.

5.1 Trust Evaluation
In module 1, a trust score, often a value between 0 and 1, for each
vehicle is computed every time a vehicle interacts or receives V2V
messages, e. g., Cooperative Awareness Messages (CAM) [12]. The
trust score needs to reflect the cooperativeness when performing
cooperative actions, such as platooning, lane change and crossing
an intersection. In addition, vehicles should also be evaluated based
on the accuracy of the information they provide, e. g., speed, ge-
ographical position, driving intentions as well as correctness of
warning messages. Such an evaluation of each vehicle’s behavior
and accuracy is typically performed using a trust or reputation
model (see Section 4.1). The trust model should also be applied on
the own vehicle’s system, the ego vehicle.

Below, we discuss how trust models for calculating the trust
scores of the ego vehicle and surrounding vehicles can be applied for
the purpose of the V2C Anomaly Detection framework. For instance,
vehicle 𝑖 should calculate its own trust score 𝑇 𝐼𝑖,𝑖 and the trust
score for vehicles it interacted with, i. e., 𝑇 𝐼𝑖, 𝑗 . These trust scores
are updated over a specified period and maintained in the vehicle’s
own database along with a confidence value indicating the level of
confidence for each specific trust score. After the specified period,
the computed trust scores and corresponding confidence values are
uploaded to the cloud for further analysis.

Trust Model. The trust models in [4] and [32] both include an
evaluation of the vehicle’s own performance with respect to trust.
Compared to Bißmeyer et al. [4], Rosenstatter and Englund [32] also
provide a detailed discussion about the relevant behavior specific
to the vehicle in front, surrounding vehicles it interacts with and
the ego vehicle.

The trust score presented in [32] is considered by the ego vehicle
for decision-making and is comprised of four trust scores with
range [0, 1] that are combined using a weighted average: (1) ego
vehicle; (2) vehicle in front; (3) interacting vehicles; (4) environment.
The authors differentiate between the vehicle in front and other
vehicles it interacts with as the vehicle in front is most important
from a safety perspective and since it can be easily evaluatedwith its
own sensors like the front radar. Moreover, the authors have shown
in real scenarios with sensor noises how such a trust score can
represent the current situation respectively trust in the surrounding
other vehicles.

In our V2C Anomaly Detection framework, the trust scores of the
vehicles should be evaluated based on all available knowledge of
the ego vehicle, similar to [32], and split into two distinct and one
combined trust score:

𝑇 𝐼𝑖, 𝑗 Trust score of vehicle 𝑗 computed by vehicle 𝑖 .
𝑇 𝐼𝑖,𝑖 /𝑇 𝐼 𝑗, 𝑗 Own perceived trust score of vehicle 𝑖/ 𝑗 .
𝑇 𝐼 𝑗 Combined trust score of vehicle 𝑗 (see Section 5.2).

Anomaly Identification. The selected trust model needs to
be able to identify the attacks and anomaly types defined in the
scenarios in Section 2.1. To further clarify situations where trust
scores and the consequent analysis in the cloud are extremely useful,
we will give one practical example for each scenario in Table 2.

Update Frequency. The trust scores should ideally be calculated
and updated upon receipt of new messages from relevant vehi-
cles within the VANET. However, due to limited computational
resources or the high number of vehicles identified as relevant, it
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Table 2: Examples of how a trust model can identify attacks and anomalies.

Anomaly/Attack Identification

Unauthorized Firmware Manipulation

The attacker, such as the owner, upgrades the ECU firmware to let the auto-
mated vehicle (vehicle 𝑗 ) drive faster than the speed limit.

Surrounding vehicles are able to observe the speed of the affected vehicle
using their own sensors, e. g., radar, and therefore reduce 𝑇 𝐼𝑖, 𝑗 .

HW/SW failures

The camera provides noisy images and therefore the vehicle’s lane keeping
assistant is misbehaving and causes the vehicle to bounce within the lane.

Surrounding vehicles observe the behavior (lateral movement within the lane)
and therefore reduce 𝑇 𝐼𝑖, 𝑗 . This behavior can be also detected by the vehicle
itself.

Legitimate SW/HW update

A legitimate update causes the vehicle to misinterpret the current road condi-
tions, e. g., icy roads, and drives too fast.

Surrounding vehicles observe the higher speed and therefore reduce 𝑇 𝐼𝑖, 𝑗 .

Cooperative Driving

To disrupt traffic an attacker performs an unauthorized firmware modification
so that the vehicle prevents other vehicles from performing a cooperative
merge into one lane (i. e., does not allow vehicles to merge in front).

This behavior is mainly identified by vehicles that experience the denial of
entering the lane in front of vehicle 𝑗 , but also by other surrounding vehicles.

might be necessary to reduce the computation of trust scores to a
lower frequency. Relevant vehicles are defined as those in direct
proximity of the ego vehicle, but also other vehicles it interacts with,
such as vehicles farther away that send a warning message, vehicles
participating in a platoon or vehicles cooperating to efficiently pass
an intersection.

The trust score needs to be updated as the vehicles are periodi-
cally re-evaluated. This can be achieved by computing the moving
average respectively the weighted moving average when new trust
evaluations for a vehicle are computed in order to maintain a single
trust score 𝑇 𝐼𝑖, 𝑗 per vehicle per evaluation period, e. g., per day.

Confidence 𝑪𝒊,𝒋 . Due to the fact that interactions with a specific
vehicle can last from a few seconds to several hours when consider-
ing platooning, we propose to include a confidence value or counter
(𝐶𝑖, 𝑗 ) to each 𝑇 𝐼𝑖, 𝑗 to indicate the confidence in the calculated trust
score per vehicle. This way, individual vehicles can also use this
confidence value to decide whether they should keep (and store) the
trust score and report it to the cloud in cases when the maximum
capacity of the allocated memory for the trust scores is reached.

Kerrache et al. [22] include a factor that considers the number of
verified legal/correct actions within their calculation of the direct
trust score (corresponds to𝑇 𝐼𝑖, 𝑗 ). We suggest to upload a confidence
value, such as the total number of interactions, together with the
trust scores in order to indicate the quality of the calculated trust
score 𝑇 𝐼𝑖, 𝑗 .

Role of 𝑻 𝑰𝒊,𝒊 . Continuously evaluating a vehicle’s own reliabil-
ity and performance is important as the own system acts as the
reference (its own sensors and knowledge about the environment)
when evaluating other vehicles. When a vehicle, for instance, ex-
periences a sudden drop in its own trust score while interacting
with other vehicles or driving autonomously it can automatically
enable logging of the most recent events. Logs can be uploaded
to the cloud along with the trust scores of the other vehicles it
interacted with recently. Including evidence of such a situation is
crucial for further investigations, when, for instance, other vehicles
also report a lower trust score for this vehicle.

Role of 𝑻 𝑰𝒊,𝒋 . The assessment of the other vehicles can be split
in two different categories: (i) verification of reported sensor infor-
mation, e. g., position, speed, acceleration, lane; and (ii) behavior,
e. g., correctly reporting warning messages, interaction/cooperation
with other vehicles, speed according to laws and road conditions.

Evaluating not only the trust when interacting with other vehi-
cles is important from a safety perspective as vehicles will rely on
sensor information received from other vehicles during platooning
and other cooperative scenarios.

Reporting Trust Scores. Each vehicle maintains its own data-
base of trust scores. The database maintains a trust score per vehicle
per defined period, e. g., per day, comprising of 4 columns: (1) ve-
hicle ID, (2) date, (3) trust score (𝑇 𝐼𝑖,𝑖 or 𝑇 𝐼𝑖, 𝑗 ), and (4) confidence
value (𝐶𝑖, 𝑗 ).

This data is uploaded to the cloud periodically, e. g., on a daily
basis. By including 𝐶𝑖, 𝑗 , it is possible to further filter trust scores
and consider whether this specific trust score should be considered
in the aggregated trust score per vehicle or not.

Recommendation. Adapting the selected trust model (e. g., [32])
to detect the attack examples shown in Tables 1 and 2 with a sig-
nificant change in the trust score is essential for this framework.
In Table 2 we showed how it is possible to identify such attacks.
Moreover, we propose and discuss the types of trust scores, and
how often they, including a confidence value, should be uploaded
to the cloud.

5.2 Combining Trust Scores
Module 2 of the V2C Anomaly Detection framework is located
in the cloud and receives trust scores (𝑇 𝐼𝑖, 𝑗 ) from other vehicles
about vehicle 𝑗 periodically. Section 4.2 provides an overview of
approaches to combine this knowledge, namely aggregation using
mean and the use of Dempster’s rule of combination.

Comparing the uses of arithmetic and geometric mean and con-
sidering the use case for this work as well as the range of the trust
score, [0, 1], we see the arithmetic mean to be more applicable since
the expected data does not vary logarithmically.
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Table 3: Comparison of the mean and DST with a varying ra-
tio of honest (𝑻 𝑰𝒊,𝒋 = 0.9) and dishonest (𝑻 𝑰𝒊,𝒋 = 0.2) vehicles.

Reported Trust Arithmetic Geometric
DST*

Scores 𝑻 𝑰𝒊,𝒋 Mean Mean
0.9 0.2 𝑚(𝑡) 𝑚(𝑑)
100% 0% 0.90 0.90 1.00 0.00
80% 20% 0.76 0.67 1.00 0.00
60% 40% 0.62 0.49 1.00 0.00
50% 50% 0.55 0.42 0.97 0.03
40% 60% 0.48 0.37 0.39 0.61
20% 80% 0.34 0.27 0.00 1.00
0% 100% 0.20 0.20 0.00 1.00

*Dempster-Shafer theory: degree of belief; trust𝑚 (𝑡 ) and distrust𝑚 (𝑑)

The strength of DST and Dempster’s rule of combination is to
combine knowledge provided by different observers without the
need of having complete knowledge of the prior probabilities. The
methods discussed in Section 4.2 highlight when DST is applica-
ble in the context of VANETs: When modeling and combining the
uncertainty about whether to trust or not trust a specific node or
information received, e. g., a warning message.

Use Case. Consider a case when vehicles report contradicting
trust scores about vehicle 𝑗 . These vehicles can either be honest
and report a high trust score (0.9), or dishonest or incorrect and
report a low trust score (0.2). Table 3 shows the results with varying
ratios of honest and dishonest vehicles. Comparing arithmetic and
geometric mean shows that the geometric mean is more pessimistic
and that a minority of dishonest or disagreeing vehicles have a
higher impact on the combined trust score. As the V2C Anomaly
Detection framework aims at identifying anomalies by observing
the aggregated trust score reported by a majority of honest vehicles,
it is desirable to use the arithmetic mean.

For the DST-based approach, we adapt Chen and Venkatara-
manan [7] and define three elements: Trust, Distrust, and Uncer-
tainty. If a vehicle trusts vehicle 𝑗 with probability of 𝛼 it results in
the following basic belief masses:𝑚(𝑡) = 𝛼 ;𝑚(𝑑) = 0;𝑚(𝑢) = 1−𝛼 ;
If a vehicle distrusts vehicle 𝑗 it results in: 𝑚(𝑡) = 0; 𝑚(𝑑) = 𝛼 ;
𝑚(𝑢) = 1− 𝛼 . In addition, we define that a𝑇 𝐼𝑖, 𝑗 below 0.5 equals to
distrust with a probability of 1 −𝑇 𝐼𝑖, 𝑗 , e. g., 𝑇 𝐼𝑖, 𝑗 = 0.2 in Table 3
indicates a distrust of𝑚(𝑑) = 0.8 and uncertainty of𝑚(𝑢) = 0.2.
The results when applying a DST approach similar to the one we
described shows that DST does not provide a sufficient level of
detail. For instance, when the belief is high in both cases, honest
𝑚(𝑡) = 0.9 and dishonest𝑚(𝑑) = 0.8 vehicle, the uncertainty is still
smaller than 10−2.

Recommendation. Considering the behavior of these three dif-
ferent approaches we suggest applying the arithmetic mean for
trust scores with a sufficiently high confidence value. For specific
cases where the majority of vehicles report a low confidence value
𝐶𝑖, 𝑗 , it can be tested whether a weighted average yields a better
result when the change detection (module 3) is applied.

5.3 Detecting Change in Behavior
The observation of the historic development of the trust score is
essential for this framework as an alert from module 3 triggers
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Figure 3: Comparison of detection techniques applied to the
trust score 𝑻 𝑰𝒋 when 3 different types of changes occur.

further investigations. Section 5.1 defines the factors and means
for computing a trust score reflecting other vehicles’ and the own
vehicle’s behavior to identify anomalies in the scenarios described
in Section 2.1. The combined trust score𝑇 𝐼 𝑗 described in Section 5.2
is a one-dimensional time series with a new data point added each
evaluation period, e. g., each day.

A variety of change point detection techniques are applicable for
this kind of data (see Section 4.3). Figure 3 shows a simulation of
the aggregated trust score 𝑇 𝐼 𝑗 of vehicle 𝑗 reported daily using the
arithmetic mean over a period of one year with three different types
of changes injected: (i) an immediate drop of 0.1 on day 28; (ii) an
immediate increase of 0.2 on day 112; and (iii) a slow decrease of𝑇 𝐼 𝑗
where each day one more out of the 9 vehicles reports a decrease
of the trust score of 0.05 starting from day 262.

We used the CUSUM detector implementation from Duarte [10]
and modified it according to [3, p.40] describing the two-sided
CUSUM algorithm. The Bayesian online change detection imple-
mentation from Kulick [23] following Adams and MacKay [1] was
chosen as a second candidate.

Figure 3 shows that both detection techniques were able to detect
the changes of the trust score. For these specific injected changes
CUSUM was 5 days respectively 2 days slower in detecting the
changes (i) and (ii). Change (iii) is already detected by the Bayesian
detection after 3 out of the 9 vehicles reported a 𝑇 𝐼𝑖, 𝑗 decreased by
0.05 whereas the CUSUM detected the change once 𝑇 𝐼 𝑗 stabilized.

Recommendation. The comparison of both techniques shows
that the Bayesian change detection [23] outperforms the two-sided
CUSUM detection [3, p.40]. This behavior is also confirmed by
Aminikhanghahi and Cook [2], as they state that Bayesian ap-
proaches require less samples for detecting change and have a
lower computational cost.

5.4 Data Analysis in the Cloud
An alert triggers module 4 when a change in the trust score of
individual vehicles in module 3 is detected. The trust scores (𝑇 𝐼𝑖, 𝑗 )
reported by the affected vehicle will be temporarily excluded in the
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computation of 𝑇 𝐼 𝑗 in module 2 to avoid including possibly wrong
or forged trust scores. The cloud data is utilized by module 4 to
investigate the cause of the anomaly and help to identify whether
more vehicles in the fleet are affected. This cloud analysis can be
split in two parts: (i) manual investigations; and (ii) automated
anomaly & intrusion detection.

Manual Investigations. Initial manual investigations are nec-
essary in order to identify and apply appropriate techniques for
anomaly detection. Thus, it is important to follow a structured
approach such as the Knowledge Discovery in Databases (KDD)
process [13] which defines the steps for analyzing data. This pro-
cess includes data mining as one step for applying statistics and
machine learning techniques on the pre-processed data with the
aim to discover new patterns and gain knowledge. As the type and
the amount of data differs between the different entities, it is needed
to follow such a process to being able to automate this analysis.

Anomaly and Intrusion Detection. Anomalies can be detected
by deploying IDSs in the cloud. IDSs can be designed to detect
misuse (knowledge-based [9]), i. e., signatures of known attacks, or
to detect a change in behavior or specification (anomaly-based [9]).

Amajority of anomalies and intrusions can be detected with spec-
ification-based techniques, such as specifications about the defined
protocol handshakes, network protocol specifics and conformity to
the application protocol. Other parameters that can be validated
with such specifications are the location and the IP address from
which the requests were sent and the exact time aworkshop claimed
to have performed an update.

Anomaly detection techniques based on artificial intelligence
need to be adjusted for the dataset, thus it is important to follow a
process such as KDD. In Section 4.4 we refer to publications that
identify and categorize relevant machine learning techniques for
anomaly detection. An example of a relevant solution is a method
based on Isolation Forest [24] presented by Siddiqui et al. [36]. The
introduced anomaly detection system produces not only an anomaly
score, but also generates explanations for detected anomalies for
the analysts and additionally includes a feedback loop to increase
the detection performance. Another technique to consider are self-
organizing maps (SOM). Qu et al. [31], for instance, explore SOM-
based clustering techniques used for intrusion detection.

Recommendation. Considering the fact that vehicle manufac-
turers may have to monitor a fleet of more than a million vehicles
and that many detection techniques have a high time complex-
ity (see [5]), it may not be feasible to perform an on-line analysis on
the entire data available in the cloud. Therefore, a scalable solution
is required. The V2C Anomaly Detection framework reduces the
computational costs by only triggering a search for anomalies in
the cloud when an anomaly of the trust score, reported by sev-
eral independent vehicles, is detected. Moreover, we suggest the
following two steps:

(1) Upon receiving an alert from module 3 the cloud data rele-
vant to vehicle 𝑗 needs to be analyzed in order to find more
information about the anomaly and its cause.

(2) Once patterns of anomaly or intrusion in the cloud data
specific to the alert about vehicle 𝑗 have been identified, the
entire vehicle fleet or a subset, such as vehicles within a
specific region, can be analyzed.

(1) Trust Scores 𝑇𝐼!,! , 𝑇𝐼!,# and Confidence Value 𝐶!,#

(2) Vehicle Services: remote unlock, emergency call,
trip information, third-party services, etc.

(3) Diagnostic Events: firmware updates, 
errors/unsuccessful update attempts, negative 
response codes, etc. 

(4) In-vehicle Alerts: network related events (e.g., DoS, port access), 
authentication errors,  alert from behavior-based IDS, etc.

Figure 4: Data accessible in the cloud

5.5 Vehicle Data in the Cloud
In this section we explore the types and variety of data available in
the cloud. The type of data strongly depends on the actor perform-
ing the analysis and their terms of agreement with their customers.
The actor is not limited to the vehicle manufacturer, but it may
also be the owner of a vehicle fleet, e. g., logistics company, or an
authority. We therefore identify and describe the type of data that
should be considered for the analysis in module 4.

Data uploaded to the cloud can be split in four categories: (1) trust
scores; (2) application data from services using the server back
end; (3) diagnostic events, e. g., update events, negative response
codes (NRCs) according to ISO 14229 [15]; (4) in-vehicle IDS alerts.
Figure 4 provides an overview and examples of these categories.

Vehicle Services. Many vehicle services, such as remote unlock,
emergency call and smartphone application, require communica-
tion to the server back end. The data of these services can contain
status updates from the vehicle, for instance, location, traffic and
road conditions, and trip statistics. The information shared depends
on the services the customer subscribes to as well as the user agree-
ment for using private sensitive data for security analysis. Metadata
from the communication between the vehicle and the server, and
data from the application protocol and possible deviations from it
can be additional evidence of an anomaly or intrusion.

Events and service information performed by an authorized
workshop are also uploaded to the cloud in order to keep track of
the modifications and repairs performed on the individual vehi-
cles. Such data includes information about the workshop, time and
location as well as which vehicle unit was upgraded, defect and
replaced, and firmware versions of each vehicle unit.

In addition, third-party service providers may choose to share the
identity or more information about anomalously behaving vehicles.

Diagnostic Events. Vehicles not only need to report that firm-
ware updates have been performed, they also need to provide infor-
mation about when and how, e. g., over-the-air or manually at the
workshop, the new firmware was downloaded. Furthermore, OEMs
need to know whether the firmware update was successful and if it
took more than one attempt to upgrade. This information can be
used, for instance, to identify whether vehicles were subject to a
possible intrusion attempt. ISO 14229 [15], Road Vehicles – Unified
Diagnostic Services (UDS), is widely used and also incorporated in
the AUTOSAR system architecture.1 From a security perspective
UDS events are of high interest as these services are used to modify
firmware and for short-term controls, e. g., triggering ECU restarts.

1https://www.autosar.org

https://www.autosar.org
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Appendix A.1 of ISO 14229 [15, Part 1] lists the defined Negative
Response Codes (NRCs). An example when such NRCs are sent is
an event that the limit of failed authentication attempts has been
reached or the attempt of sending specific UDS commands while
the vehicle was driving faster than the specified limit.

In-vehicle IDS Alerts. In-vehicle IDSs are essential for detecting
and subsequently preventing a large number of attacks. This need
is also reflected in the ENISA Good Practices for Security of Smart
Cars [14]. The detail of information when IDS alerts are received
depends on the type of IDS. Thus, the information from alerts
can range from detailed information about which attack has been
recognized, to only an alert indicating that behavior outside the
modeled normal behavior has been detected.

6 DISCUSSION
To highlight the benefits of the V2C Anomaly Detection framework,
we will discuss a use case similar to change (iii) in Section 5.3 to
detail the tasks and discuss the challenges for each module. The
introduced change causes the combined trust score 𝑇 𝐼 𝑗 to continu-
ously drop as more vehicles report a lower trust score for vehicle 𝑗 .
Possible causes for this change could be either a malicious actor
who performed an illegal modification of the firmware (scenario 1
in Section 2.1) or a legitimate firmware update (scenario 3).

(1) Trust Evaluation. Each daymore vehicles observe an undesired
behavior of the automated vehicle 𝑗 , such as speeding or driving
faster than what the current road condition allows. Therefore, the
vehicles lower the individually perceived trust score𝑇 𝐼𝑖, 𝑗 according
to the trust model and report it together with their own trust score
𝑇 𝐼𝑖,𝑖 and 𝐶𝑖, 𝑗 to the vehicle manufacturers’ cloud.

Opening such a peer evaluation between vehicles to a group
of vehicle manufacturers would naturally lead to more indepen-
dent evaluations by other vehicles encountered on the roads and
thus more data. However, the trust models need to be similar in
terms of evaluation criteria in order to avoid biases of different im-
plementations. Another challenge is the identification of vehicles
when pseudonym certificates are used to hide the true identities of
vehicles in the VANET. In this case the corresponding entity, i. e.,
certificate authority, needs to be involved in order to correlate the
trust score to the correct vehicles.

(2) Combining Trust Scores.Module 2 combines the trust scores
𝑇 𝐼𝑖, 𝑗 with a sufficiently high confidence value 𝐶𝑖, 𝑗 in form of 𝑇 𝐼 𝑗 .
In the beginning only a few vehicles may experience a change
in the behavior as example 5 in scenario 3, for instance, is only
perceived when the road is slippery or icy, e. g., in the mornings
and evenings, however, over time more vehicles report a lowered
𝑇 𝐼𝑖, 𝑗 causing the overall trust score to drop more significantly. The
trust score perceived by the vehicle itself, i. e.,𝑇 𝐼 𝑗, 𝑗 , may stay stable
as the vehicle itself perceives the environment incorrectly due to
the firmware update. For this reason, we suggest to monitor 𝑇 𝐼 𝑗, 𝑗
separate from 𝑇 𝐼 𝑗 .

(3) Detecting Change in Behavior.With the 𝑇 𝐼 𝑗 degrading each
day, module 3 detects the change and raises an alert once a certain
threshold is reached. Sections 4.3 and 5.3 show that there are many
suitable algorithms for detecting change in one-dimensional time
series data. In this work we explored two techniques in more detail,
namely CUSUM and Bayesian online detection. The comparison in

Figure 3 shows that the Bayesian online detection is faster compared
to CUSUM as it detects the change already while the change is
progressing. This characteristic is also described in the comparison
of both techniques [2].

(4) Cloud Analysis. As soon as the observation of the combined
trust score per vehicle 𝑇 𝐼 𝑗 triggers an alert raised by module 3, the
anomaly detection defined in module 4 gets activated. In the first
step, the anomaly detection performs an analysis on data related to
vehicle 𝑗 . In this context, a specification-based IDS may detect an
unusually high number of unsuccessful firmware update attempts,
possibly caused by an attacker, followed by a successful upgrade
within a specified period. Another analysis can inspect whether
the vehicle was recently in a workshop or if the firmware was
upgraded. Based on these anomalies, the system can further search
for vehicles with similar patterns in the database.

In addition to specification and rule-based intrusion detection
mechanisms, machine learning techniques, such as classification
and clustering techniques are appropriate candidates for this type
of data. Nevertheless, it is necessary to follow an approach such
as KDD to explore the data, find new patterns and consequently
adapt existing detection techniques.

Evaluation. Representing undesired and malicious behavior in
form of trust scores is essential for detecting anomalies using this
framework. Existing trust models [4, 32] show how data plausibility
checks and misbehavior detection can be used as a base for making
decisions in automated vehicles. In Section 5.1, we describe the re-
quirements for such trust models and specifics on how to use them
including detailed examples highlighting what kinds of anomalies
a trust model needs to be able to identify to significantly reduce the
trust score. Moreover, we evaluated the modules on their own with
initial experiments and discussions considering also the practical-
ity of each module. A sophisticated prototype covering individual
vehicles including the cloud data they produce is planned in future
work.

7 CONCLUSION
In this paper, we present the V2C Anomaly Detection framework,
which is a novel framework combining the assessment of Vehicle-
to-Vehicle communication and the perceived quality of cooperative
interactions between vehicles resulting in a trust score, with vehicle
data in the cloud. The peer evaluation of vehicle behavior allows
identification of local anomalies and attacks even when important
security controls such as in-vehicle IDSs fail to detect them, for
example due to an attacker exploiting a vulnerability, an insider
or a firmware upgrade causing unintended behavior. Furthermore,
the analysis of cloud data makes it possible to detect and identify
patterns of anomalies and intrusions on a wider scale such as on a
fleet level. Ultimately, the advantage of the V2C Anomaly Detection
framework lies in the fact that it is designed to reduce the com-
putational costs in the cloud by triggering a cloud analysis once
the combined trust evaluation performed by independent vehicles
shows a significant change, i. e., a changed behavior resulting in a
decline of the trust score.

We have provided scenarios focusing on persistent threats to
explain the requirements for each module of the V2C Anomaly
Detection framework in terms of functionality, inputs and outputs.



ARES 2021, August 17–20, 2021, Vienna, Austria Rosenstatter, Olovsson and Almgren

We also provide an initial identification and detailed discussions to
aid in choosing or adapting techniques for each module so that a
vehicle manufacturer, fleet owner or other actor in the cloud is able
to select and adapt relevant techniques depending on the available
data.
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