

HoliSec

Holistic Approach to Improve Data Security

Interplay between Safety and Security

Peter Folkesson, RISE March 26, 2019. Time 14:15 – 15:00

Introduction

- Failures caused by hardware/software faults in vehicles
 - May affect safety
 - Need safety mechanisms to manage
- Increased connectivity of vehicles may lead to failures caused by cybersecurity attacks
 - In addition to **security** and **privacy** may also affect **safety**
 - Security mechanisms to manage
- Security mechanisms must not prevent the functionality of the safety mechanisms and vice versa
- Holistic view from both safety and security perspectives beneficial

HoliSec Deliverables

- D3.3: Interplay between Safety, Security and Privacy
 - Analysis of 17 types of security mechanisms
 - Overview of tools and attack methods for testing mechanisms
- D4.1.2: Secure Software Verification & Validation
 - Attack injection framework
 - MODIFI: Model-Implemented Fault- and Attack Injection Tool
 - Experimental results

Security Mechanisms

- Security mechanisms listed in IEC 62443, SESAMO, OWASP, NIST SP 800-53 categorized into 17 types:
 - access control
 - authentication control
 - device authentication
 - firewalls
 - virtual networks
 - encryption
 - virtual private networks
 - log auditing
 - intrusion detection systems

- virus/malicious code detection systems
- vulnerability scanning
- HCM and ASM tools
- operating systems
- web technologies
- physical security controls
- signatures
- partitioning and separation

Analysis of Security Mechanisms

- Effects on safety, security and privacy
- Intrusion prevention or detection
- ISO 26262 implementation level
- Systematic or application specific
- Frequency in which software updates are needed
- Operate concurrently or pre-emptively with system execution
- Relative resource usage
- Mapping to STRIDE threats and corresponding cybersecurity attacks mitigated
- Commonly available tools suitable for testing

Summary of Security Mechanisms

- Safety:
 - 12 mechanisms may have positive effects on safety
 - 2 mechanisms may have negative effect on safety: authentication control, access control
- Privacy:
 - 2 mechanisms target privacy: *encryption, VPN*
 - 2 mechanisms have negligible effect on privacy: device authentication, signatures

Summary of Security Mechanisms

ISO 26262 implementation level

Summary of Security Mechanisms

- Frequently:
 - log auditing, intrusion detection systems, virus/malicious code detection systems, vulnerability scanning, HCM and ASM tools, operating systems
- Occasionally:
 - authentication control, device authentication, firewalls, virtual private networks, web technologies
- Rarely:
 - access control, virtual networks, encryption, physical security controls, signatures

HoliSec Deliverables

- D3.3: Interplay between Safety, Security and Privacy
 - Analysis of 17 categories of security mechanisms
 - Overview of tools and attack methods for testing mechanisms
- D4.1.2: Secure Software Verification & Validation
 - Attack injection framework
 - MODIFI: Model-Implemented Fault- and Attack Injection Tool
 - Experimental results

Fault Injection

Common approach for evaluating system safety

Injects artificial faults in systems in various ways depending on the chosen technique (hardware, software, simulations, ...)

Fault Injection

• Fault injection

- To obtain coverage estimates for applications
- Iteratively improve coverage based on the errors
 Fault injection has been effectively used to
 evaluate the effectiveness of *safety mechanisms* in the presence of different types of *faults*.

			VFS
protected with	\longrightarrow		

Attack Injection – Research Questions

How effective is it to use fault injection to inject security attacks?

To what extent can *security attacks* influence system safety?

Why Using Fault Injection to Simulate Security Attacks?

- Fault injection has been successfully used to evaluate system safety
- It maps well into security testing frameworks
 - Fuzz testing
 - Testing inputs that are unexpected
 - Vulnerability testing
 - Finding vulnerabilities using automated testing tools
 - Penetration testing
 - Finding other vulnerabilities that are difficult to be found by automated testing tools

Using Fault Injection to Simulate Security Attacks

A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental Concepts of Dependability. University of Newcastle, Computing Science, 2001:

Using Fault Injection to Simulate Security Attacks

special type of faults which are

human made

HoliSec

Holistic Approach to Improve Data Security

- deliberate and malicious
- affecting hardware/software
- from external system boundaries
- occurring during the operational phase

VINNOVA

Using Fault Injection to Simulate Security Attacks

access control, authentication control, device authentication, firewalls, virtual networks, encryption, virtual private networks, vulnerability scanning, HCM and ASM tools, web technologies, physical security controls, signatures, partitioning and separation log auditing, intrusion detection systems, virus/malicious code detection systems, operating systems

MODIFI: MODel-Implemented Fault Injection Tool

- Useful for integrating fault injection into modelbased development
- Enables early dependability evaluation of software developed as models

MODel-Implemented Fault Injection (MODIFI)

• Injecting Faults in Simulink Models

Original model

Model with fault injection support

MODel-Implemented Fault Injection (MODIFI)

• Provides a large number of fault models

Model-Implemented Attack Injection

- Attack models added to fault model library
- Overview of MODIFI:

Model-Implemented Attack Injection

Model-Implemented Attack Injection

Cybersecurity attacks

Threat	Attack	
Spoofing	Fake messages	
Spooring	Spoofing	
	Corrupt data or code	
	Deliver malware	
	Alter	
Tampering	Inject	
	Corrupt messages	
	Manipulate	
	Configuration change	
Depudiation	Replay	
Repudiation	Repudiation of message transmission and receipt	
	Listen	
	Intercept	
Information disclosure	Eavesdropping	
	Illegal acquisition	
	Covert channel	
	Disable	
Denial of service	Denial of service	
	Jamming	
Elevation of	Illegal acquisition	
privilege	Gain root access	

Model-Implemented Attack Injection

- Cybersecurity attacks
 - Corrupt data or code
 - Corrupt messages
 - Replay
 - Intercept
 - Jamming

Threat	Attack	
Spoofing	Fake messages	
Spooling	Spoofing	
	Corrupt data or code	
	Deliver malware	
	Alter	
Tampering	Inject	
	Corrupt messages	
	Manipulate	
	Configuration change	
Repudiation	Replay	
	Repudiation of message transmission and receipt	
	Listen	
	Intercept	
Information disclosure	Eavesdropping	
	Illegal acquisition	
	Covert channel	
	Disable	
Denial of service	Denial of service	
	Jamming	
Elevation of	Illegal acquisition	
privilege	Gain root access	

Cybersecurity Attack Models

HoliSec

Cybersecurity Attack Models

Cybersecurity Attack Models

HoliSec

 Outcome Classification – Safety Impact (System Output):

• CAN bus

• Brake-by-wire controller (347 injectable locations)

HoliSec

• Brake-by-wire controller

Speed deviations (e.g., v=10) < ±v km/h >= ±v km/h

Attack model	Number of attacks	Non-effective	Benign	Severe
Replay(n, m)	1388	712	676	0
ReplayRandomMessage	1388	586	768	34
CorruptDataOrCode(x, y)	1388	457	629	302
CorruptMessage(x, y)	1388	784	537	67
Jamming	1388	97	294	997
Intercept(n, 0)	1388	540	797	51

n and *m* are randomly selected between 1 and 10.

• Brake-by-wire controller

Speed deviations (e.g., v=10) < ±v km/h >= ±v km/h

Attack model	Number of attacks	Non-effective	Benign	Severe
\bigcirc Replay(n, m)	1388	712	676	0
ReplayRandomMessage	1388	586	768	34
CorruptDataOrCode(x, y)	1388	457	629	302
CorruptMessage(x, y)	1388	784	537	67
Jamming	1388	97	294	997
Intercept(n, 0)	1388	540	797	51

n and *m* are randomly selected between 1 and 10.

• Brake-by-wire controller

Attack model	Number of attacks	Non-effective	Benign	Severe
Replay(n, m)	1388	712	676	0
Intercept(n, 0)	1388	540	797	51

n and *m* are randomly selected between 1 and 10.

Attack model	Number of attacks	Non-effective	Benign	Severe
Replay(n, m)	1388	398	557	433
Intercept(n, 0)	1388	249	292	847

n and *m* are randomly selected between 1 and 1000.

Implication

 Mapping of Cybersecurity Attacks to Commonly Used Fault Models

Cybersecurity Attack Models	Traditional Fault Models	
Replay(n, m)	-	
ReplayRandomMessage	-	
CorruptDataOrCode(x, y)	Multiple stuck-at	
CorruptMessage(x, y)	Multiple bit-flips	
Jamming	Oscillations	
Intercept(n, v)	Stuck-at-zero or Stuck-at-value	

Implication

Take-away:

Safety and security analysis of computer systems should be done by a mixed group of safety and security experts.

Future Work

- Modeling many more cybersecurity attacks
 As well as combining different attacks
- Evaluating safety and security mechanisms
 - Analyzing the impact of security mechanism on system safety
 - Analyzing the impact of safety mechanism on system security

Summary

- 17 types of security mechanisms analysed
 - Some may have negative effect on safety
- Using fault injection to model cybersecurity attacks
 - Model-implemented attack injection
- Interplay between safety and security
 - Evaluation of six cybersecurity attacks
- Traditional fault injections to model cybersecurity attacks
- Holistic view from both safety and security perspectives during system development suggested

HoliSec

Holistic Approach to Improve Data Security

Thank you for your attention!

Contact:

Peter Folkesson

peter.folkesson@ri.se

+46 10 516 54 16

Behrooz Sangchoolie

behrooz.sangchoolie@ri.se

+46 10 516 61 89

