
Report from ESCAR EU – Nov 2018

Tomas Olovsson
Tomas.Olovsson@chalmers.se

Computer Science and Engineering

Fast, Furious and Insecure: Passive Keyless Entry and
Start Systems in Modern Supercars
Lennert Wouters: COSIC at KU Leuven

Goal: clone passive keyless cards for Tesla model S

Vehicle periodically broadcasts its ID (2 bytes), and
if key nearby, it responds

Reverse engineering revealed algorithms:
outdated DST40 which transforms a 40-bit
challenge to a 24-bit reply

No authentication between key and vehicle exist,
i.e. vehicle cannot know who answers

Conclusion: Cloning a key card is easy: retrieve 2-byte car ID,
get close to the key and send two challenges, record the

responses and look up the key! That’s it.

Cloning the Key card

• The 40-bit challenge 0x636f736963 was selected

• All possible replies were calculated and stored in files

• Due to the 40->24 bit transformation, 65,536 possible keys
can generate the same answer

• Another challenge is sent where brute force analysis is done
to reveal the key. Takes 2 seconds

Automotive anti-theft retrofit kits and their Safety and
Security implications
Tobias Hoppe: IAV automotive engineering

A new gadget is installed to
prevent against theft

After gadget authorizes access,
power is turned on to original key
fob receiver/ECU

Software defined radio is used to
interact with the system, easy and
cheap. A DVB USB-stick works well!

Security analysis

The system uses a 20-bit challenge, but turns out only 12 bits are random
Every 2.8 second, a new challenge is issued

• But after 16 messages (45 seconds), the code sequence repeats, so
replays are trivial to do

• Relay attacks also possible

• Brute force attacks, i.e. to transmit 212 = 4096 messages takes max 2
minutes and was demonstrated

Takeaways:
Replay protection needed (longer keys, rolling codes or challenge response)
Relay protection also needed but more complicated – not yet state of the art

Real-World Adversarial Attacks on Traffic Signs
Alexander Kreines: Harman

Neural networks are now becoming ubiquitous and
used in sign recognition, object detection from
sensors, traffic lane detection, etc.

Problem: we don’t know how robust they are

New attacks (neural network spoofing) possible:
• Hard to notice

• Impossible to detect with classical methods

• Easy to implement

Analyzing neural network performance

They have a test lab where they build heat maps:

• A dot is inserted in an image to see how sensitive
the system is in this area

• Possible to visualize how the system works when
analyzing an image (compare with a brain scan)

• Possible to know accuracy and robustness of
detections

• Can be used to train system in sensitive areas

There Will Be Glitches: Extracting and Analyzing
Automotive Firmware Efficiently
Niek Timmers - Riscure

Inject faults to bypass security: if (authenticated) then ….
by running ECUs outside specified voltages or frequencies, create glitches,
…

UDS (Unified diagnostic services), ISO 14229 also useful target
– Often used for “secure” firmware updates
– Demonstrated it is possible to bypass secure boot [Blackhat demo]

Easy to extract firmware – cannot be protected, just a matter of time
– Reverse engineering hard,
– “Tainting” works well!

Takeaway: Use fault injection in your own testing
– And write code that require two or more glitches to fail!

Dangerous Intelligence: Attacks against Machine
Learning Systems
Konrad Rieck, TU Braunschweig

Keynote talk about AI and machine learning and how to attack
machine learning systems.

Problem: ML algorithms are good at average-case problems,
not worst case problems.

An attacker can manipulate training data: remove or add input,
bias data in some direction.

The attacker is interested in the minimum required input
change to cause misclassification

Attacking MLS systems

1. By testing different input, the decision
border can be reconstructed

2. By poisoning data, the learning process itself
is manipulated

Backdoors and unwanted behavior can be
the result. Showed an example with an artificial
road sign that triggers strong steering to the right.

Defense is hard. Security during training needed and protection
against manipulation of training data.

Takeaways

• Machine learning is insecure!

• Algorithms are not smart, learned models not same as
human perception and understanding.

• Security research is urgently needed in the machine learning
world!

Woodpecker, a Software-only True Random Generator
for the CAN Bus
Tsvika Dagan: Tel Aviv University

Proposed a way to use the CAN bus to collect entropy for
pseudo random number generation

Inter-arrival times for frames were measured, and results
were promising when analyzed

- - -
A question from the audience:
wouldn’t a compromised ECU have similar knowledge of
the random data and therefore sessions and keys be
predictable?

TCAN: Authentication Without Cryptography on a CAN
Bus Based on Nodes Location on the Bus
Eli Gavril: Technion, computer science dept., Israel

Goal: knowing the true sender of a message and verifying it has not been tampered with

• Message arrival time – depends on the location of the ECU on the bus

• By measuring arrival time difference, we know the location of the sender

• There is also a weak echo signal when the signal reaches the end of the bus

• A monitor is used which contains an authentication table with legal pairs of location
and message type

• If the message pair is illegal, it invalidates the message by transmitting an error
frame (overwrites the message)

• They propose an echo signal implementation has a voltage difference which is
higher than a regular dominant signal. The monitor can measure the voltage, regular
ECUs can’t.

The authentication table can either be created by the OEM or

learnt at the startup of the vehicle, possibly using cryptographic

authentication.

TCAN is patent pending. Not yet implemented in a real vehicle.

ECU-1: msg 1482
ECU-2: msg 1350
 msg 1351
ECU-3: …

Shift Left: Fuzzing Earlier in the Automotive Software
Development Lifecycle using HIL Systems
Dennis Oka: Synopsys, Ryo Kurach, Nagoya University Japan

Security testing and fuzzing can be integrated into vehicle development

Approach: integrate fuzz testing into the functional testing workflow
and do it earlier in the development process

They have built a system with remote-controlled toy cars where
acceleration, steering, lights, etc. can be controlled

Uses Autosar and 4 controllers/ECUs control the vehicle using CAN
communication

After a 1 hour session with 100,000 fuzzed CAN messages, they found
hang-up and freezes and incorrect configurations of the Autosar OS

