
E2B: IOT HACKING

Security Testing of an OBD-II Connected IoT
Device

Gustav Marstorp and Hannes Lindström

Abstract—The Internet of Things (IoT) is a rapidly growing
network. As society begins to trust the devices in the IoT with
increasingly complex tasks, issues regarding the security of these
devices are of high priority. An example of an IoT-device in which
failure of security could be fatal, is the Telia Sense. Telia Sense
is an OBD-II dongle which together with a mobile application
connects a car to a smartphone.

In this paper, the discoveries that was made during security
testing of Telia Sense will be discussed. The system was investi-
gated through a black box perspective. Primarily, a model of the
system was produced. Threats were then identified, ranked and
tested accordingly.

No major vulnerabilities were found. The results all indicated
that Telia Sense is a well secured system. The main reasons to
this is the fact that the device has very limited functionality
and its communications are bounded. Even though no major
vulnerabilities were found, this paper can still be used as a guide
for future testing of security in IoT devices.

I. INTRODUCTION

A. Background
Cyber security is an issue of increasing importance, es-

pecially considering the rate of which the IoT is growing.
The Mirai malware, which affected countless IoT-devices, is
what enabled some of the largest DDoS-attacks in history [1].
Despite this, cyber security can still be overlooked by the
manufacturers in an attempt of getting their product out on
the market as quick as possible. This lack of security is the
reason that ethical hackers exist. Ethical hacking is the concept
of attempting to expose security vulnerabilities, and thereafter
informing the system owners in order to make the system more
secure.

This project investigated the security of one specific IoT
system: Telia Sense. Telia Sense consists of an OBD-II adapter
which together with a mobile application can be used to
connect a car to a smartphone.

B. Telia Sense
Telia Sense is an IoT system consisting an OBD-II dongle

and a mobile application [2]. Together, the two makes it
possible to connect a car to a smartphone. The OBD-II dongle
also functions as a Wi-Fi hotspot. The device is manufactured
by ZTE with the model name VM6200S.

The mobile application shows information about the regis-
tered car. Both physical information as dimensions and survey
period but also status of the car. By collecting data from
the dongle, the app sends warnings when the battery level
is low, emissions are too high or if the engine lamp indicates
defects. It is also possible to access the car’s location as well
as information on previous trips [2].

C. OBD-II

The OBD-II port is a 16-pin connection port, often times
placed below the steering wheel. Its primary use was to give
independent repair shops and car dealers access to download
diagnostic data and run tests, for example on emission [3].
Today there is a growing market of devices that utilize OBD-
II in order to give owners access to the same data through their
smartphone. In 1996 the OBD-II port was made mandatory for
all cars in the United States. In 2001 the same standard was
introduced to all gasoline fueled cars in Europe [3].

D. CAN

Through the OBD-II port it is possible to get direct access
to the Controller Area Network (CAN). For over 30 years,
CAN has been the standard for internal networks in passenger
cars. CAN was not designed to be secure from intrusion and
had no reason to be, since the only way to access it was
through physical access [4]. Connected to this network are
electronic control units (ECUs). These units are what connects
the mechanical functions of the car to the electronic control
system; this includes vehicle operations such as the throttle,
breaks, steering and also simpler functions like the locks [3].
On a CAN bus, messages are broadcasted to all nodes. The
CAN frame includes a destination field and every node ignores
data that is not addressed to them. However, information about
the source is not included in the frame. This means that the
receiving node can not know where the message comes from
and if it is trustworthy or not [3].

E. Project goal

The main goal of the project was to investigate potential
flaws in security of the Telia Sense system. The question asked
was: how secure is Telia Sense, and is it possible to access
the CAN network by hacking the unit?

II. SYSTEM MODEL

In order to be able to carry out sufficient security testing
of a system, a model of the system is of much use. Testing
of the device is carried out from a black-box perspective; this
means that very little prior information is given regarding the
system architecture and what security measures have been
implemented. Because of this, some testing had to be done
in order to make sure that the model was as true to reality as
possible. This map, which can be seen in figure 1, of the
system could then be used as a starting point in the task



E2B: IOT HACKING

of identifying attack vectors and creating a complete threat
model.

To identify which servers are being used, a proxy was set
up to intercept traffic between the app and the internet.

III. THREAT ANALYSIS

A. Identifying threats

A threat analysis was carried out based from the system
model, and the threats were categorized according to the
STRIDE model. STRIDE is an acronym that stands for Spoof-
ing of identity, Tampering with data, Repudiation, Information
disclosure, Denial of service and Elevation of privileges [5].

Considering the limited extent and goal of the project, some
categories of threats were of higher priority. In order to send
arbitrary CAN messages from the dongle, an attack involving
elevation of privilege or tampering with data seemed most
likely. The main threats, those which seemed most likely to
lead to a working exploit, were identified and listed in tables I
to V.

TABLE I
THREAT 1

Threat
description

Attacker gets access to a root shell on the device,
then uses this to execute commands.

Threat target Internet interface of the Sense dongle & Wi-Fi
hotspot

Attack
techniques

Attacker manages to compromise a service running
on an open port.

TABLE II
THREAT 2

Threat
description

By analyzing the mobile application, the attacker
gains access to information about the system, e.g.
backdoor accounts, configuration files, source code
and private keys.

Threat target Telia Sense mobile application

Attack
techniques

Through deconstruction and analysis of the app,
an attacker discovers files or code which contains
sensitive information.

TABLE III
THREAT 3

Threat
description

By analyzing the firmware, the attacker gains access
to information about the system, e.g. backdoor ac-
counts, configuration files, source code and private
keys.

Threat target Firmware of the Sense dongle

Attack
techniques

By obtaining, deconstructing and analyzing the
firmware, an attacker discovers files or code which
contains sensitive information.

TABLE IV
THREAT 4

Threat
description

Attacker succeeds in performing a buffer overflow
attack on the device.

Threat target Sense dongle.

Attack
techniques

Attacker manages to overrun buffer boundaries by
tampering with data that is sent to the server

TABLE V
THREAT 5

Threat
description

Attacker succeeds in performing a command injec-
tion attack on the device.

Threat target Sense dongle.

Attack
techniques

Attacker manages to insert and execute commands
by tampering with data that is sent to the server

B. Rating threats

The threats were rated using the DREAD rating system.
DREAD stands for:

• Damage potential: How great is the damage if exploited?
• Reproducibility: How easy is it to reproduce the attack?
• Exploitability: How easy is it to attack?
• Affected users: Roughly how many users are affected?
• Discoverability: How easy is it to find the vulnerability?
The rating system of DREAD is 1-3. 1 is low risk, 2 is

medium risk and 3 is high risk. The final risk is then ranked
where 5-7 is low, 8-11 is medium and 12-15 is high risk [5].
The result of this is displayed in table VI.

TABLE VI
DREAD

Threat 1 Threat 2 Threat 3 Threat 4 Threat 5

D 3 2 2 3 3

R 2 3 2 2 3

E 2 2 2 1 1

A 3 3 3 1 1

D 3 2 2 1 1

Total 13 12 11 8 9

IV. THEORY

A. Port scanning

To combat the possibility of remote attacks of the device, it
is very important that its internet interface is secured properly.
One basic task that can be performed during reconnaissance
of a remote system is port scanning. Port scanning can be
performed in multiple ways and by using different protocols,
however, the primary method is the same. By attempting to
connect to a port and then analyzing the response (or lack of
response), conclusions can be drawn about whether the port is
open or closed. Open ports indicate a running network service
and, to an attacker, a possible point of entry. Because of this,
it is recommended to avoid publicly open ports if they are not
required.



E2B: IOT HACKING

Secondary Services

Folksam Köra Säkert

Bilia

EasyPark

Primary services

MachineToHuman

ProvisioningsConnected-CarsUsers Orders GeoFence

Analytics

Crashlytics

Mixpanel

Modem

Processor Hotspot

OBD-II

Telia Sense  
 Mobile Application

User

Car (CAN-Bus)

Viking

Bilprovningen

Mobile Device

Fig. 1. Basic map of the Telia Sense system.

The information gathered from a port scan is not restricted
to finding open ports. By using different types of probe
packets, additional information can be gathered. For example,
OS-fingerprinting and version detection of services can be
performed. This could improve an attackers possibilities of
finding vulnerabilities.

Despite the simplicity of a port scan, there are countless
examples of exploits made possible because of services on
publicly open ports. One notable example is discussed in [6];
in this case the researchers found multiple open ports, one of
which they were able to compromise. The service that they
found was bound to the open port was a D-Bus message
service which is used for inter-process communications. By
using this exposed service, a command injection vulnerability
was discovered. However, this vulnerability was not even
needed since the service already included a feature to execute
arbitrary shell commands. This further goes to show the
importance of not leaving key services exposed to a potential
attack.

B. Mobile application

The analysis of the mobile application can be divided into
two parts: static analysis and dynamic analysis.

Static analysis is a method used to study a program without
executing it. The purpose is to detect errors or weaknesses
in the program. Usually an automated tool is used to make
the process easier. These tools go through the code and looks
at app permissions, browsable activities and other additional
functions. Examples of poor usage of coding standards and
potential vulnerability are flagged. This could, for example,

be hardcoded sensitive information such as private keys or
IP-addresses [7].

Android apps are usually written in Java source code
and then compiled to Java bytecode. Bytecode is computer
object code, designed for efficient execution by a program
often referred to as a virtual machine. The virtual machine
translates each generalized machine instruction into a specific
machine instruction, instructions that the computer processor
understand. In android machines this virtual machine is called
android runtime (ART). ART uses bytecode as input. The for-
mat for these files are DalvikEXecutable (.dex) or Optimized
Dalvik Executable (.odex) [8].

To perform static analysis of an app, the program code need
to be readable for humans. When downloading an Android
package kit (APK), which is the package file format for
android apps, this is not the case. The APK consist of a lot
of different files: program code, assets, resources, certificates
and a manifest file. The program code, which in the APK is
in .dex or .odex format, is very interesting when investigating
security. To make the code readable for humans, it needs to
be decompiled. First to Java bytecode and then to Java source
code, in which it was originally written.

The second part of analyzing an application is the dynamic
half. During dynamic analysis, data storage and server com-
munications are investigated in runtime.

How data is stored in an app is important. Storing critical
data in an unsecure manner can lead to negative consequences.
A commonly used way of saving permanently small collec-
tions of key value-pairs is with the SharedPreferences API [9].
The file is stored within the app’s data directory. By gaining



E2B: IOT HACKING

root level access it is possible to get the data stored in the
SharedPreferences file where sensitive information could be
found.

The communication part of the dynamic analysis can be
done by setting up a proxy. All HTTPS traffic between the
app and server can then be displayed and even tampered with.
By executing all of the functions in the app at least one time,
it is possible to map which server are used for what purpose
[7]. Inputs can also be tested for command injection and buffer
overflow vulnerabilities.

C. Firmware

When it comes to controlling an IoT device, the firmware
and the hardware that it is running on is fundamental. This,
combined with the fact that security in firmware is often
times overlooked by developers, is why it is of great interest
to an attacker. Firmware analysis is often times performed
with the aim of locating: passwords, private keys, vulnerable
services, configuration files, backdoors or source code [10].
The amount of work required to be successful in this task can
vary; some manufacturers and industries puts more effort into
complicating the reverse engineering process than others.

The first step that is required in order to start analyzing the
firmware is, naturally, obtaining it. This can be achieved in
multiple different ways. For instance, it can be downloaded
directly from the vendor, it can be proxied during an update
and finally: Firmware can be dumped from the hardware [10].

D. Hardware

When it comes to hacking IoT-devices, especially devices
like Telia Sense, exploits that require access to the hardware
is not going to be the major thing to worry about. Despite
this, it is still important that security researchers do not forget
to explore this aspect. Information about the hardware can be
crucial in order to succeed in executing a software exploit.
Communication interfaces that were intended for debugging
and programming can be of help to a hacker, for instance, by
presenting runtime information. In some cases, these interfaces
might even present a root shell. Some of the main communi-
cation interfaces to pay attention to are: USB, UART, SPI, I2C
and JTAG [11].

V. METHOD

A. Port scanning

Port scanning of the Telia Sense dongle was executed using
multiple different approaches. What differed between these test
was not only the content of the test probes, the source of the
scans also connected to the dongle through different interfaces.
The setups that were used includes the following:

• Source of scan connected directly to the Sense’s hotspot
(scanning the local IP-address assigned to the gateway)

• Source of scan located on a different network, scanning
the Sense over the internet using its global IP-address.

• Source of scan connected to the hotspot of one Sense,
scanning another Sense over the internet using its global
IP-address.

For all of these configurations, the ports were probed
using both UDP and TCP. The program that was used for
the scanning was Nmap: one of the most popular network
scanning softwares.

B. Mobile application

In this project, static analysis was performed by using the
automatic tool Mobile Security Framework (MobSF). The
Telia Sense APK was downloaded and then inputted to MobSF,
which then decompiled the app and analyzed its content.
In the program interface, components as activities, services,
receivers and providers were listed. It also analyzed API usage,
app permissions, browsable activities and additional functions.
Code sections that indicate the possibility of a vulnerability or
hardcoded sensitive information were flagged. These sections
were then reviewed manually.

In order to perform the dynamic analysis of the Telia Sense,
Burp Suite was used. Burp Suite is a graphical tool for security
testing. By setting up a proxy, all the data traffic between
the app and servers could be observed. By executing all the
functions inside the app and analyzing the messages that are
being sent to the servers, information about how the app and
servers work can be gained. To complement this information,
the app’s data storage was analyzed. The SharedPrefs file
and its content was scanned during runtime. This was made
possible by ”rooting” the Android phone, which gives access
to root level directories and files.

By using the proxy in Burp Suite, messages to the server
were intercepted and edited after they had left the phone.
This allowed for the ability to test how the server responded
to illegitimate messages and modified values of variables. In
order to detect what was being forwarded to the physical unit,
the UART read console was observed at the time of testing.
The main focus of this testing was to look for the possibility
of injection or buffer overflow attacks, (targeted at the dongle,
not the servers). In both tests, settings regarding the hotspot
configuration were changed in the application. This would then
trigger a message to be sent to the Sense device, and not stop
at the server.

In the case of testing for buffer overflow vulnerabilities, this
was performed by modifying the SSID and password string
variables to be of a very large size.

Injection vulnerabilities were also tested for by editing
the SSID and password fields, this time the variables were
modified to include special characters and system commands
in different forms. The UART read console was then studied
in hopes of responses from the device that could indicate that
system commands were being executed.

C. Firmware

The firmware of Telia Sense was not available for download
online. Also, the device communicates with the server over
an encrypted 4G-connection, this means that proxying or
mirroring was not an option. Because of this, an attempt of
acquiring the firmware was made by dumping the contents of
the flash memory that the device boots from. This was done
by using a TL866CS, a universal programmer/reader. In order



E2B: IOT HACKING

to do this, the flash memory had to be desoldered from the
PCB.

Further analysis of the flash-dump was performed by using
Binwalk. Binwalk is a penetration testing tool which can be
used for scanning binary files for embedded files and source
code.

D. Hardware

Disassembling the Sense-dongle and removing metal shield-
ing exposed a USB-C port. By using the data sheets of the
processor [12] in combination with a multimeter, additional
JTAG and UART interfaces could be located. Unfortunately,
it was not possible to establish a connection with the USB port
from a computer. It was also not possible to communicate with
the device over the JTAG interface. However, readings of the
UART port were successful at 115200 baud.

VI. RESULTS

A. Port scanning

Table VII shows the result of the port scans were UDP- and
TCP-probes were used.

TABLE VII
RESULTS FROM PORT SCANNING

Probing with
TCP

Probing with
UDP

Source of scan located on a
different network, scanning the
Sense over the internet using a
global IP-address

Port 53 open
The rest of
the ports were
open—filtered.

All ports were
either closed or
open—filtered

Source of scan connected di-
rectly to the Sense’s hotspot
(scanning the the local IP-
address assigned to the gate-
way)

All ports were fil-
tered

All ports were
either closed or
open—filtered

Source of scan connected to
the hotspot of one Sense, scan-
ning another Sense over the
Internet using its global IP-
address

All ports were fil-
tered

All ports were
either closed or
open—filtered.

B. Mobile application

The results of the static analysis were limited. In table VIII,
the issues that MobSF discovered in its code analysis are listed.
However, by reviewing the code sections affected by hand, no
actual threats were discovered.

The analysis of the traffic between the app and server,
in combination with the data found in the SharedPrefs file
lead to a understanding of how the application worked and
what variables were being passed on to the servers. This
understanding was mainly used in testing for injection and
buffer overflow vulnerabilities in the device.

The modified messages that contained very large strings (to
test for the possibility of buffer overflows) were not accepted
by the server. Since the servers controlled the variables for
size, this was not a feasible attack.

However, the servers did accept special characters in strings.
These modified messages were then forwarded to the device.

The UART readings on the device, did not indicate any
successful injection of commands. This attack technique was
then set aside as well.

TABLE VIII
MOBSF CODE ANALYSIS

Issue Severity
This App uses Java Hash Code. It’s a weak hash function and
should never be used in Secure Crypto Implementation.

High

App can read/write to External Storage. Any App can read
data written to External Storage.

High

Files may contain hardcoded sensitive informations like user-
names, passwords, keys etc.

High

IP Address disclosure Warning

App creates temp file. Sensitive information should never be
written into a temp file.

High

The App uses an insecure Random Number Generator. High

This App may have root detection capabilities. Secure

C. Firmware
By dumping the contents of the flash drive, we were

presented with a binary file. By translating this file into ASCII
and reading its contents, it could be concluded that major
sections of the file were compressed or encrypted. An entropy
analysis was performed using Binwalk, and the results of this
are shown in figure 2. This entropy analysis seems to confirm
the assumption that the firmware is compressed or encrypted.

The file was also scanned for signatures that indicate file
systems or partition headers etc., however, none were found.

Fig. 2. Entropy graph of the binary file which was dumped from the device.

D. Hardware
The UART communication interface presented a read con-

sole which printed information regarding the device’s status
and hotspot settings, for instance. It was, however, only a read
console and commands could not be executed.

VII. DISCUSSION

A. Port scanning

The port scans all indicated that the system was well
secured. No vulnerable services were discovered, and nearly



E2B: IOT HACKING

all ports were classified as filtered. This means that the packets
were dropped somewhere in the process, most likely due to
a firewall. This is an excellent countermeasure to take in
order to make port scanning less rewarding to an attacker.
Even though potentially vulnerable services are running on
the device, utilizing different rules for filtering their traffic
can complicate the process for a hacker. Not only does the
attacker now have to compromise the service itself, but also
find a way to bypass the firewall. This could be very time
consuming and could, for example, require spoofing.

B. Mobile application

The result of the statical and dynamical testing of the
mobile application did not present any obvious vulnerabilities.
It did, however, help in getting an understanding of how the
system worked. This could in turn, be of help when testing
for vulnerabilities against command injection and buffer over-
flows. Any time a user gets the chance to input data into a
program, it is important that this input is verified. This is
handled by Telia well in the mobile application. However, by
modifying the HTTPS messages, some potential minor flaws
were discovered. For instance, special characters were able to
be sent to the device even though they were not supported.
In this case it did not turn out to be a problem, but a simple
verification on the server-side could stop these messages from
being forwarded at all.

C. Firmware

The content that was dumped from the flash memory
did not reveal much information. The developers seems to
have encrypted the firmware in order to make the reverse
engineering process much harder. This is definitely a reliable
way of making attacks harder to perform. However, some
might argue that a secure firmware or application does not
need to be obfuscated.

D. Hardware

None of the identified hardware communication interfaces
presented the user with a shell command line and only the
UART interface presented any data at all. This is good since
it counters the possibility of many hardware hacks, it also
complicates the information gathering process for attackers.

VIII. CONCLUSIONS

In conclusion, the Telia Sense system is very well secured
over all. What makes it so secure is mainly the fact that the
device has very limited functionality and its communications
are bounded. The app is very well separated from the actual
Sense dongle and it only communicates with the server.
When the communications are limited to one channel and the
functions that are handled are few, attackers are very limited
in finding a vulnerability. This was proven in the case of the
Telia Sense.

Furthermore, because of the fact that the device is connected
to the Internet over an encrypted 4G connection, it is going
to be very hard for a hacker to compromise this channel of

communication. This combined with the fact that the firmware
is hard to acquire makes it very difficult for an attacker to get
an idea of how the device functions at all. This makes it much
harder to attack.

Another important aspect of security is the ability to update
the firmware when vulnerabilities and bugs have been discov-
ered. Updates are carried out over the air (OTA), and once
again: this encrypted communication is hard for an attacker to
compromise.

If the work on this project was to be further continued,
a deeper analysis and exploration of the firmware would be
performed. Without additional information about the system,
it is going to be hard to manage to find any vulnerabilities.

ACKNOWLEDGMENT

The authors would like to thank supervisor Pontus Johnson
for his guidance and support during the entire project.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai
botnet,” in Proceedings of the 26th USENIX Security Sympo-
sium, 2017. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[2] (2018, april) Gör bilägandet till en barnlek. Telia Sverige AB
556430-0142 Box 50077, 973 22 Luleå. [Online]. Available: https:
//www.telia.se/privat/bredband/tjanster/teliasense#pageSection 01

[3] C. K. Dan J. Klinedinst, “On board diagnostics: Risks and vulnerabilities
of the connected vehicle (white paper),” in ’Architecture of OBD-II and
CAN’. Carnegie Mellon University Software Engineering Institute 4500
Fifth Avenue Pittsburgh, PA 15213-2612: CERT Division, April 2016,
p. ’2’.

[4] R. Currie, “Hacking the can bus: Basic manipulation of a modern
automobile through can bus reverse engineering (white paper),” in ’
Introduction’. SANS Institute InfoSec Reading Room, May 2017, p.
’2’.

[5] A. Guzman and A. Gupta, “Iot penetration testing cookbook,” in ’IoT
Threat modeling’. 35 Livery Street Birmingham UK: Packt Publishing
Ltd, November 2017, pp. ’33–35’.

[6] D. C. Miller, , and C. Valasek, in ’Remote Exploitation of an Unaltered
Passenger Vehicle’. 303 Second Street South Tower, Suite 900 San
Francisco, CA 94107: Black Hat, August 2015.

[7] A. Guzman and A. Gupta, “Iot penetration testing cookbook,” in
’Exploiting IoT Mobile Applications’. 35 Livery Street Birmingham
UK: Packt Publishing Ltd, November 2017, pp. ’172–222’.

[8] (2017, November) Art and dalvik. 1600 Amphitheatre Parkway
Mountain View, CA 94043 USA. [Online]. Available: https://source.
android.com/devices/tech/dalvik/

[9] (2018, April) Save key-value data. 1600 Amphitheatre Parkway
Mountain View, CA 94043 USA. [Online]. Available: https://developer.
android.com/training/data-storage/shared-preferences?authuser=4

[10] A. Guzman and A. Gupta, “Iot penetration testing cookbook,” in
’Analyzing and Exploiting Firmware’. 35 Livery Street Birmingham
UK: Packt Publishing Ltd, November 2017, pp. ’70–83’.

[11] ——, “Iot penetration testing cookbook,” in ’IoT Device Hacking’. 35
Livery Street Birmingham UK: Packt Publishing Ltd, November 2017,
pp. ’223–255’.

[12] (2017, April) Stm32f105xx stm32f107xx. [Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/datasheet/
e4/f3/1a/89/5a/02/46/ae/CD00220364.pdf/files/CD00220364.pdf/jcr:
content/translations/en.CD00220364.pdf


