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Abstract

Architectural threat analysis has become an important cornerstone for organizations concerned with developing secure
software. Due to the large number of existing techniques it is becoming more challenging for practitioners to select an
appropriate threat analysis technique. Therefore, we conducted a systematic literature review (SLR) of the existing
techniques for threat analysis. In our study we compare 26 methodologies for what concerns their applicability, charac-
teristics of the required input for analysis, characteristics of analysis procedure, characteristics of analysis outcomes and
ease of adoption. We also provide insight into the obstacles for adopting the existing approaches and discuss the current
state of their adoption in software engineering trends (e.g. Agile, DevOps, etc.). As a summary of our findings we have
observed that: the analysis procedure is not precisely defined, there is a lack of quality assurance of analysis outcomes
and tool support and validation are limited.

Keywords: Threat analysis (modeling), risk assessment, security-by-design, software systems, systematic literature
review (SLR)

1. Introduction

After decades of research the issue of integrating secu-
rity early-on in the Software Development Life-cycle (SDL)
has received more attention and is becoming a corner stone
in software development. In this respect, architectural
threat analysis plays a major role in holistically addressing
security issues in software development. Threat analysis
includes activities which help to identify, analyze and pri-
oritize potential security and privacy threats to a software
system and the information it handles. A threat analysis
technique consists of a systematic analysis of the attacker’s
profile, vis-a-vis the assets of value to the organization.
Such activities often take place in the design phase and
are repeated later on during the product life-cycle, if nec-
essary. The main purpose for performing threat analysis
is to identify and mitigate potential risks by means of elic-
iting or refining security requirements. Threat analysis is
particularly important, since many security vulnerabilities
are caused due to architectural design flaws. A failure to
consider security early-on can be a cause for so-called Ar-
chitectural Technical Debt (ATD) [1]. Furthermore, fixing
such vulnerabilities after implementation is very costly and
requires workarounds which sometimes increase the attack
surface.

Building Security In Maturity Model (BSIMM)1 col-
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lects statistics from 95 companies and gauge their level
of adoption with respect to several secure software devel-
opment practices. According to this technical report [2],
security-specific code analysis techniques have successfully
found their way into the industrial practice, as two thirds
of the surveyed companies routinely adopt them. How-
ever, it is a bit discouraging to find that only one third
of the companies adopt architectural threat analysis. One
possible explanation for that is the lack of automation sup-
port of threat analysis, since available tools require exten-
sive human interaction for efficient use [3, 4, 5]. Another
possible explanation is the lack of an industry-standard
technique for threat analysis. In comparison with safety
analysis techniques (failure analysis), threat analysis have
yet to mature in this area [6]. This paper attempts to un-
derstand the potential road blocks to a wider adoption of
threat analysis techniques by systematically studying the
existing methods.

Recently a limited and compendiary review of threat
analysis techniques has emerged [7] in a form of a short
technical report, yet this review only describes a handful
of approaches. To the best of our knowledge, this is the
first systematic and complete review of the state of the
art. We have analyzed 38 primary studies for a total of
26 threat analysis techniques. With this study we aim at
providing information to the practitioners about the extent
the existing threats analysis techniques are applicable to
their needs. Providing such information to practitioners
might facilitate active usage of the aforementioned tech-
niques and in the long-term cause techniques to mature.
The contributions of this work are threefold:
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(i) We systematically analyze the existing literature and
identify gaps for future research,

(ii) we provide insight into the obstacles for adopting the
existing approaches in practice and how these obsta-
cles could be overcome,

(iii) we provide insight into the adoption of the threat
analysis techniques in software engineering trends (i.e.
DevOps, Agile development, IoT and automotive).

The rest of the paper is organized as follows. Section 2
describes the research methodology, including the research
questions and data extraction strategy. Section 3 presents
the results, while Section 4 discusses them. The threats to
validity are listed in Section 5. Section 6 discusses the re-
lated work and Section 7 presents the concluding remarks.

2. Research methodology

We conducted our research by adopting the systematic
literature review method. By following the steps intro-
duced by Kitchenham et al. [8], we collected and analyzed
the literature. According to the guidelines, our study con-
sisted of three main steps: planning, conducting and docu-
menting the review. The SLR was motivated by the need
to strengthen security engineering practices in the SDL,
desired both by academia and industry. We searched for
similar studies in the ACM, IEEE, Google Scholar and Sco-
pus digital libraries (November 2016), to establish whether
an SLR about threat analysis techniques was previously
conducted. None of the mentioned digital libraries con-
tained an SLR about threat analysis techniques, reaching
the same goals and objectives.

2.1. Research questions

The initial goal of this study is to catalog and charac-
terize the existing threat analysis techniques. Thereafter,
the second goal of our work is to provide future directions
and to address how the techniques can be used by prac-
titioners including their adoption to the latest software
engineering trends. To this end, a critical analysis of the
selected literature was performed answering three main
research questions, which are reflected in the assessment
criteria, presented in Tables 2, 3 and 4.

RQ1: What are the main characteristics of the
identified techniques? We have organized the first re-
search question into four inquiries (refer to Table 2 for
more details).

Applicability (RQ1.1). What level of abstraction is the
threat analysis technique applicable to? Threat analysis
can be conducted on projects, where little is known about

the actual system in the early design stages. However, sys-
tems are sometimes also analyzed for threats later-on in
the SDL. For instance, integration of new units in a code-
base may require a threat analysis of the effected compo-
nents. Therefore, such an analysis might be performed on
a low-level of abstraction (e.g. static code analysis).

Input (RQ1.2). What information do the identified
techniques require as input? This question refers to the
information about the system that is required in order to
execute the analysis. In particular, it aims at identifying
the type and the representation of required information for
executing the analysis. This information helps researchers
and practitioners to determine which approaches can be
adopted according to the available software artefacts.

Procedure (RQ1.3). What kind of activities are part of
the analysis procedure of the identified techniques? This
research question aims at determining how the input is
transformed to obtain the desired outcomes of the analysis.
Most threat analysis techniques, such as STRIDE [9, 10],
CLASP [11], OCTAVE [12], etc. require expert knowledge
for execution. However, some methods are supported by
catalogs of security threats, which aid the identification
of threats by providing contextual examples. This study
considers such techniques as knowledge-based. Further-
more, we observe the level of precision of threat analysis
procedures. A higher precision may increase the quality
of the analysis and provide opportunities for security com-
pliance. Commonly, the technique documentation includes
descriptive guidelines for analysis execution, yet no clear
definition is given for when the procedure ends. As part
of this research question we also investigate how the pro-
posed techniques determine when the analysis should stop
(i.e. Definition of Done).

Finally, we also observe which security concerns are
accounted for and to what extent is risk assessment present
in the analysis procedure.

Outcomes (RQ1.4). What information is gained by the
outcomes of the identified techniques? This question in-
tends to qualify the added value of adopting a technique.
The main purpose for investigating the outcomes is to in-
dicate what kind of results can be expected from the stud-
ied approaches. Among others, we assess the granularity
of outcomes as well as the available quality assurance of
outcomes.

RQ2: What is the ease of adoption of the iden-
tified techniques? Our second research question is mo-
tivated from a more practical perspective (see Table 3). It
aims to determine the challenges of adopting the studied
approaches in practice. This work refers to ease of adop-
tion as a broader term compared to “usability”. First, tool
availability is a strong indicator of technique maturity. Un-
fortunately, fully stand alone tools are less common com-
pared to prototype tools or tool extensions. Second, prac-
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titioners benefit from a complementary guidance for execu-
tion. The guidance could provide fine- or coarse-grained
instructions for using the proposed tool in combination
with the theoretical concepts of the approach. Third, tools
are typically accompanied by tool documentation. We also
investigate whether there are other sources of technique
documentation available (e.g. demonstrations). Finally,
the ease of adopting the studied approaches is also depen-
dent on the required knowledge and skill set of the analyst.
For instance, approaches that require extensive education
in formal methods will be difficult to use for software en-
gineers without additional training. Likewise, manual ap-
proaches typically require domain knowledge and knowl-
edge about security attacks and countermeasures. To this
aim, the second research question aims to determine the
target audience of the proposed approaches.

RQ3: What evidence exists that threat analy-
sis techniques work in practice? The purpose of this
question is to identify the extent of validation conducted
for a technique. In addition to previously mentioned char-
acteristics, providing evidence about a realistic application
of an approach is very important to practitioners as well as
academics. In the scientific community, validation has to
be extensive and reproducible. Unfortunately validation is
sometimes under-prioritized (as summarized in Table 4).
First, this research question aims to determine the type
of validation method used to evaluate the proposed ap-
proaches (e.g. case studies). Second, we aim to determine
who performed the validation (e.g. a third party). The
reader should note that we do not attempt to undermine
the validation efforts contributed by the authors of the
techniques. Third, this research question aims to iden-
tify the domain of validation (e.g. automotive, web based
systems, etc). Validation across different domains further
enables the generalizability of results. In general, exten-
sive validation includes different validation methods across
domains, preferably also performed by validators with no
conflict of interest.

2.2. Search strategy

The search strategy included an automatic search of
digital libraries using a search string validated by experts.
According to the SLR guidelines and lessons learned [13],
the search string is comprised of keywords grouped into
four categories.

ACM and Scholar

(1) (secur* OR privacy) AND

(2) (abuse OR misuse OR risk OR threat* OR attack* OR

flaw*) AND

(3) (analysis OR assess* OR model* OR management OR

elicit*) AND

(4) (system OR software OR application)

IEEE

(1) (secur* OR privacy) AND

Figure 1: Search method used in this study. The digital libraries
were queried in January 2017.

(2) (abuse OR misuse OR risk OR threat* OR attack* OR

flaw) AND

(3) (analysis OR assess* OR model* OR elicitation)

AND

(4) (system OR software OR application)

We conducted pilot searches in order to refine the search
string. While doing so, we excluded the keywords that did
not produce additional search results. Furthermore, due
to additional constraints imposed by the digital libraries
(IEEE Xplore), we were restricted the number of keywords
and “wildcard” characters (*). To this aim, we have de-
cided to use a second, similar search string used to search
within keywords, title, abstract and full text of the pub-
lications. Keywords related to security and privacy are
in the first group of terms. Keywords limiting the search
results to black-hat (type) of techniques are in the sec-
ond group of terms. The third group of keywords specifies
the activity of the target techniques. Finally, the fourth
group of keywords limits the scope to software, systems
and applications.

Figure 1 shows the adopted search method of this study.
We adopt two search methods in this study: (i) automatic
search of digital libraries and (ii) backwards snowballing.

Digital libraries. We have obtained studies from the
digital libraries using the search string. In January 2017,
ACM returned 5129 titles, IEEE Xplore 20853 and Google
Scholar 155000 search results. The search results were
ordered by relevance and cut to top 2000 for ACM and
IEEE and to top 1000 for Google Scholar, resulting in a
total of 5000 search results. We then proceeded to filter
the search results in several steps as shown in Figure 1.

The CORE [14] ranking portal was used for assessing
the rank for both conference and journal venues. The por-
tal provides two separate search interfaces, one for confer-
ence venues 2 and one for journal venues 3. Journal venues

2http://portal.core.edu.au/conf-ranks/
3http://portal.core.edu.au/jnl-ranks/
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Table 1: Inclusion and exclusion criteria.

Inclusion criteria

1. Primary studies
2. Studies (i.e. papers) that address methodologies, methods or

techniques for identifying, prioritizing and analyzing security
threats to a system including a software component.

3. Studies that relate to software design.
4. Studies that relate to security or privacy of software related sys-

tems.

Exclusion criteria

1. Studies written in any language other than the English language.
2. Short publications and posters (< 3 pages).
3. Publications at venues with a CORE rank below B (explained in

Section 2.2).
4. Publications that were unavailable through the search engine.
5. Studies that focus on concrete mitigation strategies, security so-

lutions, taxonomies of security threats and security analysis of
systems.

6. Studies that focus on anomaly detection and intrusion detection
systems.

7. Publications about safety-hazard analysis and detection methods
and studies investigating the relationships between safety and
security requirements.

are ranked based on the ERA ranking process [15]. The
ranking assigns conference and journal venues into the fol-
lowing categories: (i) A∗ - leading venues in a discipline
area, (ii) A - highly respected venues, (iii) B - good venues,
(iv) C - venues meeting the minimum standards, and (v)
Unranked - insufficient quality data has been provided to
determine the ranking. In the first filtering step (filter-
ing 1) the publications presented at a venue with CORE
rank below B were excluded. The publications that were
presented at an unranked venue required further investi-
gation for exclusion. The inclusion and exclusion criteria
(Table 1) was manually applied to the title and keywords.
After this step, the amount of search results considerably
decreased to 136.

In the second filtering step (filtering 2) the inclusion
and exclusion criteria (Table 1) was applied to the abstract
and conclusion sections of the 136 remaining publications.
After this step, the amount of search results decreased to
62.

Finally, 62 papers were read entirely. In the third fil-
tering step (filtering 3) the inclusion and exclusion criteria
was applied to the entire paper, which resulted in the ex-
clusion of 13 papers. After this step, the amount of search
results decreased to 31.

Snowballing. We have also performed a backward snow-
balling search method [16]. Essentially, this search method
involves repeating the entire search strategy on the refer-
enced work of a final set of papers. In our case, snowballing
was performed on 31 papers. In the fourth filtering step
(filtering 4) the inclusion and exclusion criteria was applied
to the entire paper obtained by backwards snowballing.
After this step, the amount of search results increased to
38, leading to the final primary studies.

2.3. Inclusion and exclusion criteria

Table 1 presents the summarized inclusion and exclu-
sion criteria. We were interested in the work published at
any time before January 2017 that present a contribution
in the area of threat analysis throughout the Software De-
velopment Life-cycle. The first five exclusion criteria in
Table 1 are self-explanatory. We have noticed that a large
amount of search results focused on anomaly detection and
intrusion detection systems. Furthermore, the search re-
sults contained a lot of work published on safety-hazard
analysis and relationships between safety and security re-
quirements. For these reasons we added the last two ex-
clusion criteria (6 and 7 in Table 1).

2.4. Data extraction

Table 2: Assessment criteria corresponding to research question RQ1.

Characterization (RQ1)

Applicability Level of abstraction Requirements level
Architectural level
Design level
Implementation level

Input Type Goals
Requirements
Attacker behavior
Security assumptions
Architectural design
Source code

Representation Textual description
Model-based
Other

Procedure Knowledge based No
Yes

Level of precision None
Based on examples
Based on templates
Semi-automated
Very precise

Security objectives Confidentiality
Integrity
Availability
Accountability
Not applicable

Risk Not considered
Internal part of technique
Externally considered

Stopping condition Present
Not present

Outcomes Type Mitigations
Threats
Security requirements

Representation Structured text
Model-based
Other

Assurance of quality Explicit
Present
Not present

Granularity High-level
Low level

Table 3: Assessment criteria corresponding to research question RQ2.

Ease of adoption (RQ2)

Tool support None
Prototype tool
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Continued from previous column
Tool

Guidance for execution Coarse grained phrases
Fine grained steps
No structure

Documentation Publication
Tutorial
Presentations
Tool documentation
Demonstration

Target audience Engineer
Engineer with security background
Security expert
Researcher/PhD

Table 4: Assessment criteria corresponding to research question RQ3.

Validation (RQ3)

Type Case study
Experiment
Illustration

Validator None
Author
3rd party
both

Domain Automotive
IS
SOA
SCADA
...

Tables 2, 3 and 4 depict the assessment criteria used to
record the information that was needed to answer the re-
search questions. We have extracted the information from
38 publications by building a database of the identified
techniques and corresponding assessments. In this sec-
tion, we provide the rationale behind some of our choices
for criteria levels.

The types of input were determined by choosing the
most commonly required information for threat analysis
to start. This includes requirements (functional or non-
functional), attacker behavior, security assumptions, ar-
chitectural design, source code and goals. The term “goal”
is often used as a general term, yet this work makes a dis-
tinction between requirements (i.e. goal refinements) and
goals. Threat analysis of a system requires at least: (i)
the knowledge of what the system is (architecture, source
code, functional requirements) and (ii) what it will be pro-
tected from (security assumptions, attacker behavior).

Studies have shown (e.g. Yuan et al. [17], Wang et
al. [18], Williams et a;. [19]) that including knowledge
base (e.g. taxonomies, catalogs of misuse and abuse cases,
attack scenarios and trees, etc.) helps the analyst to iden-
tify and analyze threats. Therefore we were interested
to record which existing techniques provide a knowledge-
base. We have assessed the techniques as knowledge based
if the they are supported by some external source of in-
formation which helps raise the quality of outcomes. For
instance, some techniques provide a catalog of example
threats (e.g. STRIDE [9, 10]), templates (e.g. misuse
cases) or even use one of the existing databases (such as

CAPEC4, CWE5, CVE6) to compute threat suggestions.
In addition to knowledge base, we were interested in

observing the precision of the analysis techniques. Due
to scarce empirical evidence, we estimate the analysis
precision based on the described procedure. Therefore,
we assessed the precision of each technique by observing
whether the procedure of analysis is: (i) supported by a
formal framework (very precise), (ii) supported by tools
that semi-automate the analysis, (iii) based on templates,
(iv) based on example threats or (v) not accounting for
precision (none). Note that this work does not consider
semi-automated approaches to be necessarily more precise
than approaches based on examples, for instance.

Since risk assessment plays an important role in threat
prioritization, we have investigated to what extent the
techniques consider risk. Namely, some studies focus on
associating risk levels to identified threats, while others
consider risk externally, e.g. by combining the technique
with an external risk management framework.

Notice that in addition to assessing the type and repre-
sentation of analysis outcomes, this work also investigates
the quality assurance of outcomes. We assess the tech-
niques on this criterion by observing whether the quality
assurance of outcomes is explicit, present or absent (none).
Analysis techniques that explicitly assure the outcomes for
quality define this activity as part of the analysis proce-
dure. For instance, if the outcomes are represented with
models, the technique may perform model verification as
part of the analysis procedure (as presented by Dianxiang
Xu and K. E. Nygard [20]). However, explicit quality as-
surance of outcomes is not always present in the studied
approaches. If the techniques provide informal guidelines
for assessing the quality of outcomes (such as a checklist
of most common threats), this study still considers that
a form of quality assurance is present. Finally, this work
investigates the granularity of outcomes. We assess the
granularity of outcomes with two levels: high-level and
low-level outcome. For example, the analysis technique
presented by Almorsy et al. [3] projects the outcomes
on models, which can be transformed into source code.
Therefore, we have assessed that this technique produces
a low-level outcome. On the other hand, Haley et al. [21]
present so called “threat descriptions”, which are descrip-
tive phrases of the form: performing action “X” on/to as-
set “Y” could cause harm “Z”. Therefore, we have assessed
that this technique produces a high-level outcome.

As per RQ2 (Table 3), this study also assesses the avail-
able support for executing a threat analysis technique.
Coarse grained guidance for execution include high-level
overview of the technique with less detailed descriptions
(only using key verbs, for instance). For instance, describ-
ing the threat identification as “brainstorming threats with
participants” is considered as a coarse-grained guideline.

4https://capec.mitre.org/
5https://cwe.mitre.org/
6https://cve.mitre.org/
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E.g. Whittle et al. [5] provide a recommended process for
developing and testing executable misuse cases. Yet, the
authors do not further explain how the attack scenarios
are identified or how the mitigations are supposed to be
re-designed in case the simulation ends in a successful at-
tack. On the other hand, Chen et al. [22] exemplify how
to use the supporting tool by describing one instance run.
Guidelines are considered to be fine-grained if they include
precise instructions for analysis execution.

The target audience for the techniques was assessed to
understand the minimum knowledge and skills required in
order to execute each analysis technique. We identified
four levels of competency, three of which are aligned to
the Software Assurance Competency Model presented in
[23]. Table 5 shows the mapping between the competency
levels and the target audience considered in our work. An
engineer is considered to posses the knowledge and skills
of the competency level L1. A security trained engineer is
considered to possess an active knowledge of security re-
lated concepts and has an engineering degree (BSc and/or
MSc), which corresponds to levels L2-L3. Finally, a secu-
rity expert corresponds to the levels L4-L5. In this work
we consider researches to possess an active knowledge of
practical as well as theoretical concepts in the field of se-
curity in software engineering.

As per RQ3 (Table 4) we have developed the assess-
ment criteria to understand how each technique was vali-
dated. We have assessed the validation of each technique
with three levels: case study, experiment and illustration.
A case study is sometimes a rather loosely used term in
software engineering. According to Runeson and Höst [24]
the presented case studies in software engineering range
from very ambitious and well organized studies in the field,
to small toy examples that claim to be case studies. A case
study is a research methodology used to study a real phe-
nomena of exploratory, descriptive, explanatory and im-
proving purpose, the later being most popular in software
engineering [24]. It requires rigorous planning, data col-
lection and triangulation, data analysis, a discussion on
threats to validity and evidence based conclusions. This
work considers all applications of the proposed approach
to a real world problem as case studies, in spite of only
a handful (if any) conforming to the previous definition.
In addition to case studies our assessment criteria includes
two other forms of validation, namely illustrations and ex-
periments. In contrast to the lightweight illustrations, ex-
periments measure the effects of manipulating dependent
variable(s) on an independent (response) variable. Experi-
ments identified within this study were mostly experiments
in empirical software engineering (e.g. comparative exper-
iment of two techniques).

2.5. Quality assurance in this study

The selection of primary studies and data extraction
was performed by a single researcher (first author). In or-
der to circumvent the effects of potential bias, the following
quality assurance plan has been put in place.

Random assessment of included/excluded publications.
We have randomly selected 10% of search results and the
second author has applied the inclusion and exclusion cri-
teria independently (filtering 1 in Figure 1). The outcome
has been compared to the results of the first author. The
few disagreements (2 papers) of plausible exclusion were
discussed between the the two researchers until an agree-
ment was reached. A summary of this discussion was sub-
mitted to the third author of this study for further as-
surance. In summary, we are confident that the inclusion
and exclusion criteria was crisp enough to minimize any
selection bias.

Random quality check of data extraction. A second ran-
dom quality check was performed by the second author
with regards to the data extraction. A random sample
of the included publications (5 publications, roughly 10%)
was independently re-assessed. The outcomes of this qual-
ity check was again compared to the outcomes obtained by
the first author. This comparison yielded to a few discrep-
ancies (6 out of 67) in the perceived definition of certain
criterion levels. The first and second author revisited the
precise differences between: (i) tool and prototype tool,
(ii) engineer with security background and security expert,
(iii) goal and requirement, (iv) design and architectural
level of abstraction, (v) external and internally considered
risk, and (vi) case study and illustration. After a consen-
sus was reached, the first author of this study manually
examined the rest of the publications (90%) to assure that
the assessments were correct. To conclude, the authors are
confident that the data was extracted correctly.

Continuous soundboarding. Informally, several sessions
were held with all authors to maintain the quality of the
review. For instance, the list of publications obtained from
the initial pilot review were discussed. Further, the inclu-
sion, exclusion and assessment criteria were refined during
such sessions. These sessions were held continuously as
sanity checks for the first author.

3. Results

In this section, we first overview the techniques and
then present the answers to the research questions. We
conclude this section with a brief reflection on the ob-
served results, offering insight to the reader for when to
use certain techniques.

3.1. Overview of threat analysis techniques

Figure 2 shows a time-line of the 38 publication in-
cluded in this SLR. Overall, the interest in the area of
threat analysis approaches seems to be rather constant
with an average of 2 publications per year. There is a
noticeable progression of publications from early 2000 un-
til a peak is reached in the year 2007. Threat analysis
techniques are commonly grouped according to the focus
of analysis. As depicted, the number of publications de-
creased during the period of 2007 until 2010. Another peak
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Table 5: Target audience considered in this work in relation to the competency levels in [23].

Target audience Level Major tasks Exemplary title

Engineer L1 Tool support, low-level implementation, testing,
and maintenance

Junior Software Developer, Acceptance tester,
Junior Security Engineer, Software Assurance
Technician

Security trained en-
gineer

L2-L3 Requirements fundamentals and analysis, archi-
tectural design, implementation, risk analysis and
assessment

Security Analyst, Release Engineer, Information
Assurance Analyst, Maintenance Engineer, Se-
nior Software Developer, Software Architect

Security expert L4-L5 Assurance assessment, assurance management,
risk management across the SDL, advancing in
the field by developing, modifying, and creating
methods, practices, and principles at the organi-
zational level or higher

Project Manager, Senior Software Architect,
Chief Information Assurance Engineer, Chief
Software Engineer

Security researcher - Remain in touch with the current research and
publish own research in the discipline of security
in software engineering

PhD student, Post Doctoral candidate, Assistant
Professor, Senior lecturer, etc.

● ● ●

● ● ●

●

●

●

●

●

● ● ●

●

● ●

●1

2

3

4

5
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lic

at
io

ns

Figure 2: Year of publication for the selected techniques.

can be observed in the year 2013, where most publications
present attack-centric approaches.

Table 6 depicts threat analysis techniques included in
this SLR. Most commonly used techniques in the presented
body of knowledge were misuse cases, attack trees, prob-
lem frames and several software-centric approaches.

Misuse cases (MUC) are derived from use cases in re-
quirements engineering. In the form of templates, they are
used to capture textual descriptions of threat paths, alter-
native paths, mitigations, triggers, preconditions, assump-
tions, attacker profiles, etc. The literature also mentions
abuse cases, MUC maps and MUC scenarios. The differ-
ence between misuse and abuse cases is subtle and the two
terms are sometimes used interchangeably. Strictly speak-
ing, abuse is misuse with malicious intent. MUC maps
and scenarios both focus on representing chained attacks,
from start to the end of vulnerability exploitation.

Another way of identifying alternative paths of attack
is by using attack (or threat) trees, where the root node
is refined into leaves representing all possible attacker ac-
tions. Therefore an attack path is a single path starting at
leaf node leading to the root node. Attack trees are com-
monly adopted in a combination with other techniques.
For instance, LINDDUN [48] proposes a combined analy-
sis by first mapping the threats to (DFD) elements, using
threat tree patterns and usage scenarios in order to iden-
tify MUC scenarios.

Much like threat patterns, problem frames are used to
describe problems in software engineering. They define an
intuitively identifiable problem class in terms of its context

and the characteristics of its domains, interfaces and re-
quirements (M. Jackson [55]). As such problem frames are
rather general in scope, therefore conceptualized security
problem frames were soon introduced (Hatebur, Heisel et
al. [39] [38] [40]).

Goal-oriented requirements engineering (GORE) per-
ceives systems as a set of agents communicating in order
to achieve goals. In GORE goals (or anti-goals) are re-
fined until finally requirements (or anti-requirements) are
achieved.

Finally, several software-centric techniques are well rec-
ognized in the software engineering community, partic-
ularly in the industrial space, such as STRIDE [9, 10],
CORAS [29], P.A.S.T.A [50], DREAD [56], Trike [57], to
name a few.

Table 7 shows the analysis techniques, their respective
domains of validation and tool support. It is generally
acceptable to group threat analysis techniques into risk-
centric, attack-centric and software-centric techniques.

Risk-centric threat analysis techniques focus on assets
and their value to the organization. They aim at assessing
the risk and finding the appropriate mitigations in order
to minimize the residual risk. Their main objective is to
estimate the financial loss for the organization in case of
threat occurrence (e.g. CORAS [29]). Therefore, when
risk-centric techniques are used assets dictate the priority
of elicited security requirements.

On the other hand, attack-centric threat analysis tech-
niques focus the analysis around the hostility of the envi-
ronment. They put emphasis on identifying attacker pro-
files and attack complexity for exploiting any system vul-
nerability (e.g. Attack trees [26]). Their main objective is
to achieve high threat coverage and identify appropriate
threat migitations.

Finally, the literature also mentions so-called software-
centric threat analysis techniques. This group includes
techniques that focus the analysis around the software un-
der analysis. For example, in STRIDE [9] [10] the analysis
is performed on DFDs, which provide a high-level archi-
tectural view of the software.

However, not all threat analysis techniques can be cat-
egorized in the aforementioned three groups. For instance,
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Table 6: Threat analysis techniques. Note that, some publications were grouped by leading authors, sometimes resulting in observing separate
techniques rather that fully fledged methodologies.

Methodology Ref Technique

Abe et al. [25] Threat patterns, negative scenarios
Almorsy et al. [3] Attack scenarios
Attack and Defense Trees [26, 27] Attack trees, defense trees
Beckers et al. [28] MUC
Berger et al. [4] DFDs, rule-based graph matching
CORAS [29] Threat, risk, treatment diagrams and descriptions
Chen et al. [22] Attack paths
Dianxiang Xu and K. E. Nygard [20] Petri-nets
El Ariss and Xu [30] State charts
Encina et al. [31] Misuse patterns
Extended i* [32, 33, 34, 35] Attacker agents with goals
Haley et al. [36, 21] Threat tuple-descriptions with rebuttals to claims
Halkidis et al. [37] STRIDE, Fault tree analysis
Hatebur, Heisel et al. [38, 39, 40] Problem frames
J. McDermott et al. [41, 42] Abuse cases
KAOS [43, 44, 45] Threat graphs rooted in anti-goals, anti-models, threat trees
Karpati et al. [46, 47] MUC maps, MUC, attack trees
LINDDUN [48] Threat to (DFD) element mapping, threat tree patterns, MUC scenarios
Liu et al. [49] Attacker agents with goals
P.A.S.T.A. [50] Threat scenarios with associated risk and countermeasures
STRIDE [9, 10] Threat to (DFD) element mapping
Sheyner et al. [51] Attack graphs
Sindre and Opdahl [52] MUC
Tong Li et al. [53] Automated generation of attack trees
Tøndel et al. [54] MUC, attack trees
Whittle et al. [5] MUC

Table 7: The selected analysis techniques.

Methodology Ref Approach Domain Tool Validation

Abe et al. [25] Attack-centric IS none CS
Almorsy et al. [3] Attack-centric ERP, Web, E-commerce none EXP
Attack and Defense Trees [26, 27] Attack-centric IS, other, ATM tool CS, EXP, ILU
Beckers et al. [28] Privacy Cloud computing, E-bank none ILU
Berger et al. [4] Attack-centric Logistic application tool CS
CORAS [29] Risk-centric Telecom, SCADE, IS tool CS, EXP
Chen et al. [22] Attack-centric IT, COST prototype CS
Dianxiang Xu and K. E. Nygard [20] Attack-centric Web store none CS
Encina et al. [31] Attack-centric Cloud services none CS
Extended i* [32, 33, 34, 35] GORE Web-IS tool([34]) ILU([34])
Haley et al. [36, 21] SRE Air traffic, HR, IS none CS, ILU([21])
Halkidis et al. [37] Risk/Attack-centric E-commerce tool EXP
Hatebur, Heisel et al. [38, 39, 40] Risk/Attack-centric E-commerce tool ILU([39, 40]), CS([38])
J. McDermott et al. [41, 42] SRE IS none CS ([41])
KAOS [43, 44, 45] GORE E-commerce, Web store, Ambulance system tool CS
Karpati et al. [46, 47] Attack-centric Banking system, IS, Web-based IS tool ([46]) CS, EXP
LINDDUN [48] Privacy, GORE Social network, E-health application none CS, EXP
Liu et al. [49] SRE,GORE IS tool CS
P.A.S.T.A. [50] Risk-centric Web-bankig application none ILU
STRIDE [9, 10] Software-centric IS, automotive, other tool CS, ILU, EXP
Sheyner et al. [51] Attack-centric System Network tool ILU
Sindre and Opdahl [52] SRE E-store, Telemedicine tool CS, EXP
Tong Li et al. [53] Attack-centric Smart grid prototype CS
Tøndel et al. [54] Attack-centric IS none ILU
El Ariss and Xu [30] Attack-centric Web store none CS
Whittle et al. [5] SRE E-voting, CPS tool CS
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in GORE the main goal could be “stealing the GPS coor-
dinates of a vehicle fleet”. In this case, the analysis would
clearly evolve around that particular asset and could be
therefore considered as risk-centric. Yet, the main goal
could also be “malicious access to a DNS server”. In this
case, the discussions and the analysis can be considered
as attack-centric. For this reason, we categorize the tech-
niques also as “GORE”, “SRE” and “Privacy”, as shown
in Table 7.

Overall, a majority of techniques are attack-centric (≈
45%) and requirements engineering approaches (GORE ≈
20%, Security Requirements Engineering (SRE) ≈ 15%).
We continue to present the results for the research ques-
tions in the subsequent sections.

3.2. RQ1: Characteristics

Applicability (RQ1.1). In general, threat analysis can
be performed iteratively at several stages of the software
development. In this study, we differentiate between differ-
ent abstraction levels according to the input information
required for analysis execution. We have assessed each
technique for applicability at the level of requirements, ar-
chitecture, design and implementation. For instance, in
order to create and manually analyze attack trees the an-
alyst only needs high level goals (or anti-goals). Therefore,
the most basic form of attack trees are applicable at the
level of requirements and architecture. In this study we
make a distinction between the design and architectural
level of abstraction.

On the architectural level of abstraction requirements
are used in order to construct the architecture. Software
architecture is a set of principal design decisions made
about the system (as defined by N. Taylor et al. [58]).
The outcomes of this level of abstraction are high-levels
diagrams (such as DFDs), sequence diagrams, flow-charts
etc. The word “principal” here indicates that not all de-
sign decisions are architectural. In fact many design deci-
sions are related to the domain, algorithms, programming
languages or are based on preference.

Therefore, designing the intended architecture includes
committing to a set of architectural styles and patterns,
which are further refined until a detailed design is eval-
uated against the system requirements. The outcomes of
this level of abstraction include most (or all) the design de-
cisions made about the system (e.g. component diagrams,
connector types and interfaces, deployment diagrams, etc).

Only two techniques are applicable at the level of im-
plementation, where a concrete system is taken into ac-
count. First, Almorsy et al. [3] describe a semi-automated
Model-driven (MDE) approach for a partial architecture
reconstruction, followed by a risk-centric threat analysis.
Second, Chen et al. [22] presents a quantitative threat
analysis approach based on attack-path analysis of COTS
systems. Predominantly, the techniques are applicable at
the level of requirements (14), architecture (11) and design
(13).

Input (RQ1.2). The input of a threat analysis tech-
nique is all the information required in order to begin with
threat identification. In order to understand the input in-
formation for each threat analysis technique, we have ob-
served input type and representation. The input type can
vary from high-level goals, requirements, attacker behav-
ior, security assumptions, architectural design to source
code of the system under analysis. For instance, the root
node in an attack tree, typically referred to as an anti-goal,
is decomposed into hierarchical leaves of possible attacker
actions. Despite the domain knowledge and security ex-
pertise needed to find anti-goals and possible attack ac-
tions, the analyst does not require more than a high-level
description of the system (e.g. in terms of its business
functionality). The input representation was assessed with
three levels: textual description, model-based and other.

One third of the analyzed techniques require as input
architectural design (12 publications) and one third re-
quirements (11). Some publications (6) consider the at-
tacker behavior as input. Security assumptions are re-
quired for analysis in less than 25% of techniques (7). Only
one technique takes source code into account as input to
the analysis. Almorsy et al. [3] present a technique where
source code is an optional input to the analysis. Finally, in
some techniques (5) high-level goals were used as input to
the analysis. The required input is commonly represented
either with textual descriptions (15), models (11) or both
(4).

Procedure (RQ1.3). Threat analysis procedure in-
cludes all required actions and tasks that the analyst needs
to perform in order to obtain the desired outcomes. As de-
picted in Table 9, we assess the characteristics of the pro-
cedure that takes place during each analysis technique. To
this aim we observe traces of knowledge base, precision, se-
curity objectives and risk in the procedure of each analysis
technique. On average about half of the techniques include
a knowledge base of some kind. As previously mentioned,
knowledge base (domain or security knowledge) helps the
analyst to identify threats in the context of the system in
question. Yet, we have found that most approaches take
advantage of the existing knowledge base, rather than con-
tribute with innovative examples (e.g. Hatebur et al. [39]).
For instance, Almorsy et al. [3], Berger et al. [4], Chen et
al. [22] and Tondel et al. [54] present formalized rules to
extract knowledge from public repositories of threats and
vulnerabilities namely Common Weakness Enummeration
(CWE) [59] , Common Attack Pattern Enummeration and
Classification (CAPEC) [60], Open Web Application Se-
curity Project (OWASP) [61, 62].

In general, the precision of the technique procedures is
on the level of templates and examples (about half of the
publications). Four techniques (namely, Attack and de-
fense trees [26] [27], Dianxiang Xu and K. E. Nygard [20],
Haley et al. [21] [36] and KAOS [43, 44, 45]) formally ap-
proach the analysis and are therefore very precise. Finally,
six techniques (Almorsy et al. [3], Berger et al [4], Chen et
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Table 8: The characteristics of the applicability and input of the selected techniques.
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Abe et al. [25] • • •
Almorsy et al. [3] • • • • • • • • •
Attack and Defense Trees [26, 27] • • • •
Beckers et al. [28] • • •
Berger et al. [4] • • • •
CORAS [29] • • •
Chen et al. [22] • • • • •
Dianxiang Xu and K. E. Nygard [20] • • • •
El Ariss and Xu [30] • • •
Encina et al. [31] • • •
Extended i* [32, 33, 34, 35] • • •
Haley et al. [36, 21] • • • • • • •
Halkidis et al. [37] • • • • •
Hatebur, Heisel et al. [38, 39, 40] • • • • • • • • •
J. McDermott et al. [41, 42] • • •
KAOS [43, 44, 45] • • •
Karpati et al. [46, 47] • • • • • •
LINDDUN [48] • • • • • •
Liu et al. [49] • • •
P.A.S.T.A. [50] • • • • • • • •
STRIDE [9, 10] • • • • •
Sheyner et al. [51] • • •
Sindre and Opdahl [52] • • • •
Tong Li et al. [53] • • • • •
Tøndel et al. [54] • • • • •
Whittle et al. [5] • • •

Table 9: The characteristics of threat analysis procedure. KB = Knowledge Base.
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Abe et al. [25] • • • • • • •
Almorsy et al. [3] • • • • • • • •
Attack and Defense Trees [26, 27] • • • •
Beckers et al. [28] • • • • • • •
Berger et al. [4] • • • • • • • •
CORAS [29] • • • • • • •
Chen et al. [22] • • • • • • •
Dianxiang Xu and K. E. Nygard [20] • • • • • • •
El Ariss and Xu [30] • • • •
Encina et al. [31] • • • • • • •
Extended i* [32, 33, 34, 35] • • • • • • •
Haley et al. [36, 21] • • • • • • •
Halkidis et al. [37] • • • •
Hatebur, Heisel et al. [38, 39, 40] • • • • • • •
J. McDermott et al. [41, 42] • • • •
KAOS [43, 44, 45] • • • • • • • •
Karpati et al. [46, 47] • • • •
LINDDUN [48] • • • • •
Liu et al. [49] • • • •
P.A.S.T.A. [50] • • • • • • •
STRIDE [9, 10] • • • • • • •
Sheyner et al. [51] • • • •
Sindre and Opdahl [52] • • • •
Tong Li et al. [53] • • • • • • • •
Tøndel et al. [54] • • • •
Whittle et al. [5] • • • •
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al. [22], KAOS [43, 44, 45], Sheyner et al. [51] [63], Tøndel
et al. [54], Whittle et al. [5]) introduce a semi-automated
approach using tools (or prototype tools). According to
our assessment, about a quarter of techniques (7) describe
the analysis procedure with no regards towards the preci-
sion of the analysis.

A majority of techniques address security objectives
explicitly in the presented approach. Some studies specif-
ically mention only one security objective, yet in our as-
sessment we include other security objectives that could be
directly applied in the proposed approach. For instance,
Hatebur, Heisel et al. [38, 39, 40] describe problem frames
by introducing the authentication frame, therefore they
consider confidentiality and integrity. However, the au-
thors do not initialize possible problem frames for all se-
curity objectives. Ultimately, we do not see significant
obstacles to introduce problem frames for other security
objectives.

About half of the techniques (13) do not include risk
assessment as part of the threat analysis technique. The
rest of the studies are either risk-centric (6) or consider
risk as an external activity (7).

Outcomes (RQ1.4). As previously mentioned, we have
observed the type and representation of outcomes. We
have monitored three types of outcomes: threats, mitiga-
tions and security requirements. All techniques present ap-
proaches that produce threats as main outcomes. Threat
mitigations are security countermeasures planned for low-
ering the residual risk. Design-level security countermea-
sures are further on refined into implementable security
requirements. Beyond threats as main outcomes, about
half of the techniques also produce threat mitigations (15)
and security requirements (12) as outcomes. In fact about
a third of the techniques (8) produce all three types of
outcomes (namely Dianxiang Xu and K.E. Nygard [20],
Extended i* [32, 33, 34, 35], Haley et al. [36, 21], J. Mc-
Dermott et al. [42, 41], KAOS [43, 44, 45], LINDDUN
[48], Sindre and Opdahl [52], Whittle et al. [5]).

In addition, we have observed the representation of out-
comes. Most techniques result in outcomes represented
with either a structured text (10), model-based form (10),
or both (7). For instance, Whittle et al. [5] introduce
an aspect-oriented approach that results in finite state
machines (model-based), misuse cases (model-based) and
elicited security requirements (structured text).

Next to the type and representation, we have observed
the quality assurance of outcomes for each analysis tech-
niques. Only a handful of techniques (3) have an explicit
way of assuring the quality of outcomes (namely, Dianxi-
ang Xu and K.E. Nygard [20], Haley et al. [36, 21], KAOS
[43, 44, 45]). For example, Haley et al. [36, 21] include
an activity for constructing satisfaction arguments as part
of the procedure. The satisfaction arguments are used in
order to verify whether the primary and secondary goals
are satisfied with the resulting security requirements. The
rest of the techniques do not have an explicit activity for

quality assurance of outcomes. E.g., Beckers et al. [28]
present a method for information security management
system for cloud IS that includes threat analysis based
on patterns. Their structured approach is aligned with
ISO 271001 security standard and includes guideline for
assuring the quality of outcomes. Therefore, some form of
quality assurance of outcomes is present, yet not explic-
itly defined. We have observed a presence of some kind of
quality assurance of outcomes in 5 publications. Still, the
quality assurance of outcomes is predominantly (17) not
present in the techniques. For instance, Abe et al. [25]
propose an interesting approach for threat pattern detec-
tion and negative scenario generation, using transforma-
tion rules on sequence diagrams. However, the authors
do not evaluate or measure the quality of the generated
negative scenarios.

Regarding the granularity of outcomes, only two of the
techniques (namely Almorsy et al. [3] and Chen et al. [22])
produce low-level outcomes (e.g. source code). Almost
all of the techniques (25) result in outcomes of high-level
abstraction, which is in line with the results obtained from
observing the applicability of techniques (RQ1.1).

3.3. RQ2: Ease of adoption

As shown in Table 11, about half of the techniques (11)
do not include any tool support. The rest of the studies
are supported by tools (11) or present a prototype tool
(4). In general, the majority of studies include coarse-
grained guidelines for execution, which could be inferred
from the publication. Six techniques provide fine-grained
guidelines, yet three of them are not supported by a tool.
Furthermore, most approaches together with their tools
are only documented in the respective publications. Only a
handful of techniques provide a tool with precise guidelines
on how to use it.

The target audience of the techniques are most com-
monly security experts (9) and security trained engineers
(10). Most of the techniques describe approaches that do
not require extensive knowledge of any research field. Ac-
cording to our assessment, only two techniques are tar-
geted more towards researchers, namely Dianxiang Xu and
K. E. Nygard [20] and Halkidis et al. [37]. In general,
knowledge base, automation and tool support can decrease
the level of required expertise. Despite that, important
steps in the analysis are still required by experts (namely,
threat identification and prioritization). Three techniques
are thoroughly documented and two of them could be used
by engineers without further training (STRIDE [9, 10] and
KAOS [43, 44, 45]). They are both knowledge-based (they
provide example threats) and are well documented (they
provide tutorials, presentations, etc.) Evidently, the bet-
ter the approach is documented, the easier it is to apply
in practice.

3.4. RQ3: Validation

As shown in Table 7, the majority of techniques (19)
were validated with a case study. Despite of the recently
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Table 10: The characteristics of outcomes of the selected techniques.
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Abe et al. [25] • • • •
Almorsy et al. [3] • • • • •
Attack and Defense Trees [26, 27] • • • • •
Beckers et al. [28] • • • • •
Berger et al. [4] • • • •
CORAS [29] • • • • •
Chen et al. [22] • • • • •
Dianxiang Xu and K. E. Nygard [20] • • • • • •
El Ariss and Xu [30] • • • •
Encina et al. [31] • • • • •
Extended i* [32, 33, 34, 35] • • • • • •
Haley et al. [36, 21] • • • • • •
Halkidis et al. [37] • • • •
Hatebur, Heisel et al. [38, 39, 40] • • • • • •
J. McDermott et al. [41, 42] • • • • • • •
KAOS [43, 44, 45] • • • • • • •
Karpati et al. [46, 47] • • • • •
LINDDUN [48] • • • • • •
Liu et al. [49] • • • • • •
P.A.S.T.A. [50] • • • •
STRIDE [9, 10] • • • •
Sheyner et al. [51] • • • •
Sindre and Opdahl [52] • • • • • • •
Tong Li et al. [53] • • • • •
Tøndel et al. [54] • • • • • •
Whittle et al. [5] • • • • • • •

Table 11: The ease of adoption for techniques.
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Abe et al. [25] • • • •
Almorsy et al. [3] • • • •
Attack and Defense Trees [26, 27] • • • • • • • •
Beckers et al. [28] • • • •
Berger et al. [4] • • • •
CORAS [29] • • • •
Chen et al. [22] • • • • •
Dianxiang Xu and K. E. Nygard [20] • • • •
El Ariss and Xu [30] • • • •
Encina et al. [31] • • • •
Extended i* [32, 33, 34, 35] • • • •
Haley et al. [36, 21] • • • •
Halkidis et al. [37] • • • • •
Hatebur, Heisel et al. [38, 39, 40] • • • •
J. McDermott et al. [41, 42] • • • •
KAOS [43, 44, 45] • • • • • • •
Karpati et al. [46, 47] • • • • •
LINDDUN [48] • • • • •
Liu et al. [49] • • • •
P.A.S.T.A. [50] • • • • •
STRIDE [9, 10] • • • • • • • • •
Sheyner et al. [51] • • • •
Sindre and Opdahl [52] • • • • •
Tong Li et al. [53] • • • •
Tøndel et al. [54] • • • •
Whittle et al. [5] • • • •
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increasing quantity of empirical studies in software engi-
neering and the long history of advocating empirical re-
search in software engineering, there is still room for im-
provement [64]. About 20% of techniques (8) were vali-
dated also with an experiment, reflecting the immaturity
of empirical research in the software engineering commu-
nity. In addition, extensive validation (case studies and
experiments) was often applied only in the domain of Web
systems (E-commerce, Web store, E-bank, Social network,
E-health, Web bank, E-store, E-voting). About one third
of the techniques (9) were validated by illustrations.

3.5. Reflection on the results

Previously reported results have not considered any
preferences between the levels of our assessment criteria
(e.g. model-based is preferred over textual input). To
complement the objectively reported results, we include a
reflection, where we aim at providing insights to the reader
about the benefits of adopting certain threat analysis tech-
niques. To this aim we have considered the amount of
resource investment needed for adopting a technique. In
order to simplify the discussion we categorize the resource
investments into “small” and “large”.

If the planned resource investment is “small”, the orga-
nization is likely to prefer using a technique as is, without
any improvements. Additionally, if security is not priori-
tized, the allocated budget might be sufficient only for re-
cruiting a security trained engineer (e.g requirements en-
gineer). In this case, the time spent on threat analysis
is limited. In addition, the target audience of the tech-
nique should be engineers with or without security train-
ing. Therefore, tool availability (and maturity), documen-
tation, low target audience and a lightweight procedure
(i.e. level of precision is none, based on examples or tem-
plates) are the most valued criteria for technique selection.
According to the results of this study, techniques originat-
ing in requirements engineering fit this description. In our
opinion, the tier techniques that could be adopted in this
kind of organizations are CORAS [29], Problem Frames
(Hatebur, Heisel et al.) [38, 39, 40], MUC (Sindre and Op-
dahl) [52] and Abuse cases (J McDermott et al.) [41, 42],
Extended i* [32, 33, 34, 35], KAOS [43, 44, 45]. These
techniques seem to require less effort to use as they are
less systematic and thorough. They are more intuitive
and are supported by toolkits such as RE-Tools7.

The aforementioned techniques lack guarantees for
analysis correctness (i.e. quality assurance of outcomes).
In organizations where security is prioritized, quality as-
surance of outcomes also becomes important. In this case,
more effort for threat analysis is justified. Therefore, the
existing budget for security is bigger, sufficient for recruit-
ing security experts. The preferred techniques should not
only have good tool support and documentation, but also

7http://www.utdallas.edu/~supakkul/tools/RE-Tools/

be systematic, thorough, expert-based and possibly semi-
automated. In our opinion STRIDE [9, 10] and LIND-
DUN [48] are the tier techniques that fit this description.
STRIDE (similarly LINDDUN) is a systematic approach
that visits each element in the DFD and is therefore sub-
jected to the so called “threat explosion” problem. In or-
der to counter the explosion problem, some automation
(namely threat category generation) is already available
by the MTM8.

The previously mentioned techniques require little ad-
ditional effort since quality assurance of outcomes is not
prioritized. However, if the planned resource investment
is “large”, the organization is likely prepared for improv-
ing an existing technique to obtain an “in-house” adapted
version. We also consider academic researchers looking
for a starting point in their research to be prepared for a
“large” investment of resources. These techniques should
be systematic by construction (e.g. formal) but most im-
portantly show potential for improvement (e.g. technology
improvement). In our opinion, two such techniques stand
out. First, the work of Berger et al. [4] presents an in-
teresting semi-automated technique for extracting threats
from graphs based on rules matching certain CAPEC and
CWE entries. The authors argue that the existing notation
for DFDs needs to be extended with more security seman-
tics. To this aim, Berger et al. extend the notation by
annotating flows with assets, security objectives and type
of communication (e.g. manual input). A more formal
definition of security semantics might assure the quality
of outcomes explicitly, which is a promising research di-
rection. Further, querying graphs could be implemented
using a different set of technologies. Therefore we believe
that their approach is with some effort adaptable to the
needs of the organization. Second, Almorsy et al. [3] have
used Object Constraint Language (OCL) to define attack
scenarios and security metrics. The authors developed an
Eclipse plug-in that is able to perform a trade-off analysis
for different applications based on their signature evalua-
tor. Minimizing the architectural design space with such a
semi-automated trade-off analysis could indeed benefit or-
ganizations. For organizations that already practice MDE,
this approach could be tailored to the models they use.
Yet OCL constraints can only be as accurate as the model
instances, therefore it might be promising to pursue this
research outside the space of MDE.

4. Discussion

In this section we first discuss the applicability of threat
analysis techniques in current trends in the software engi-
neering community. We then proceed to discuss the main
findings of this study. In summary, the main findings are
the following:

8https://www.microsoft.com/en-us/download/details.aspx?

id=49168
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(i) There is potential for improving threat analysis tech-
niques in order to be applicable in the context of cur-
rent trends in software engineering,

(ii) there is a lack of quality assurance of outcomes,

(iii) the use of validation by illustration is predominant
which is worrisome,

(iv) the tools presented in the primary studies lack ma-
turity and are not always available,

(v) there is a lack of Definition of Done in the threat
analysis procedures.

4.1. Potential for improvement along current trends

Development and Operations (DevOps) is a software
engineering practice that aims at unifying software devel-
opment and operations by means of higher automation,
measurement, sharing and promoting a specific culture in
the organization. Commonly adopted activities, such as
continuous integration and deployment cause the SDL to
shorten considerably. Such organizations face significant
challenges in providing the required security of the product
under the rapid rate of software changes. Despite the im-
maturity of research in integrating security into DevOps,
some efforts are summarized by Mohan et al. [65]. Ac-
cording to a recent survey performed with practitioners
[66], the majority of participants believe that other secu-
rity practices are prevalent in DevOps organizations (i.e.
security policies, manual security tests, security configura-
tion). To the best of our knowledge, threat analysis tech-
niques have not been applied in the context of DevOps.
In our opinion, there are three areas where existing tech-
niques could be improved in order to cater to the needs of
DevOps.

First, it is important that the information that was
gained from threat analysis is automatically propagated
to source code level (and vice-versa). It might be ben-
eficial to assure the traceability between the threats and
corresponding security requirements at the level of imple-
mentation. This might facilitate a more efficient reuse of
analysis outcomes in the fast changing code base. Es-
tablishing a traceable link between architectural design
and implementation can be achieved with a “top-down”
or “bottom-up” approach. In a “top-down” approach, the
architectural design decisions need to be annotated in the
source code (e.g. as presented by Abi-Antoun and Barnes
[67]). Such annotations may have to be added manually
by developers themselves, which could render the tech-
nique unreliable. Therefore, there are existing approaches
to extract the architecture from the code base (i.e. Soft-
ware Architecture Reconstruction (SAR)) by employing
dynamic and/or static reverse engineering techniques (e.g.
as presented by Granchelli et al. [68]). To the best of our
knowledge, the existing tools supporting SAR have limi-
tations and are not commonly applied to practice. From
a usability perspective, practices such a s continuous de-
ployment cause uncertainty in the security implications of
modified code base. For instance, it would be beneficial

for developers to get instant feedback on how their con-
tribution impacts the security of the code base (e.g. one
threat is mitigated).

Second, the existing techniques would benefit from
guidelines of how to compose the analysis outcomes. In
practice, the software systems under analysis are too large
and complex to be analyzed at once. Therefore, organiza-
tions are forced to scope the system into sub-systems and
assign the analysis to several teams of experts to be an-
alyzed simultaneously. As a results, border elements are
either analyzed multiple times, or overlooked. One possi-
ble solution could be to scope the system according to as-
sets. In this case, elements handling certain assets would
be analyzed together in an end-to-end manner. To ensure
a precise DoD, a level of formalism is required. Taint anal-
ysis analyzes applications in order to present potentially
malicious data flows to the human analyst. The analyst (or
automated malware detection tool) then decides whether
such a flow constitutes a policy violation. For instance,
Arzt et al. [69] present a flow-sensitive taint analysis tools
for Android applications. One possible research direction
could be in using dynamic taint analysis techniques on ar-
chitectural models.

Third, the analysis performed for one subsystem is re-
lated to security assumptions, which may not be in line
with the security assumptions of another subsystem. Fur-
ther, threats with high impacts to the organization are typ-
ically prioritized. Threats prioritization is commonly still
performed manually, which demands a lot of resources.
Therefore, existing analysis techniques need to invest in
impact analysis automation.

The literature states that some Agile practices such
as Extreme Programming (XP) are not suitable for high-
reliability requirements [70]. Similarly to DevOps, ag-
ile development practices require highly automated threat
analysis techniques due to short sprints. Incidentally, start
ups and Agile organizations adopting novel software engi-
neering practices with less supervision are facing similar
challenges.

To conclude, in light of DevOps and Agile, where soft-
ware development is driven by change, there are three im-
portant aspect where existing analysis techniques have yet
to mature: (i) traceability of analysis in the code base, (ii)
composability of analysis outcomes and (iii) threat impact
analysis automation.

4.2. Definition of Done (DoD)

Threat analysis is typically performed on a certain level
of abstraction. The level of abstraction is determined dur-
ing the first session by system architects and security ex-
perts. However, the analysts will typically also consider
threats on a lower level of abstraction, depending on their
feasibility. It is up the experts to determine which parts of
the system should be analyzed in detail (on a low abstrac-
tion level). It is also up to the analyst to determine which
type of threats and how many are applicable to a partic-
ular part of the architecture. Scoping the size of one unit
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for analysis is still an open question, which is today han-
dled by practitioners in an ad-hoc manner. Future work
in this direction could have a large impact on the IoT do-
main, where systems are composed of a large number of
middle-ware components and devices.

4.3. Lack of precise guidelines

We have found that there is a lack of precisely defined
rules for the analysis. Some techniques operationalize rules
for discovering threats and apply them on a graph repre-
senting the architectural model (e.g. Almorsy et al. [3]).
Yet, the guidelines provided by authors for using their
plug-in tool are vague and informal. Moreover, El Ariss
and Xu [30] refer to the process of constructing attack trees
as goal refinements that continue until the desired level of
abstraction is reached. Such guidelines are not precise and,
for instance, do not elaborate on how to identify AND/OR
gates of attack trees. The lack of precise guidelines effects
the techniques’ ability to assure the quality of outcomes.
We have rarely found that the techniques have an explicit
way of determining how well the analysis was performed.
While some approaches check for the number of threats
found in comparison to a base-line analysis, only a hand-
ful do so systematically and automatically.

4.4. Ease of adoption

In the space of threat analysis approaches, tools have
been used for three main purposes: i) partially automating
the analysis procedure, ii) graphically representing threats
to the system and (iii) facilitating the analysis execution
(i.e. helping the analyst to follow the procedure).

Semi-automated approaches utilize tools for the pur-
pose of automating a part of the analysis procedure (Such
as Berger et al. [4], Almorsy et al. [3] and Whittle et al.
[5]). For instance, Whittle et al. [5] extended an existing
tool in order to automatically weave mitigation scenarios
into a set of core behavior scenarios. The authors are able
to then generate a new set of finite state machines includ-
ing both the initial behavior and the behavior including
the mitigations. Finally, they execute the attack behavior
on the new set of finite state machines to determine the
success of the attack.

Manual threat analysis approaches are supported by
tools for the purpose of retaining the structure of the anal-
ysis technique. For example, MUC (and MUC maps [46])
are a form of templates used in the process of analysis. The
tools supporting threat analysis with MUCs only provide
the required elements to model the misuse, such as graphi-
cal elements to represent attackers with an empty template
for defining their abilities. Meanwhile threat identification
is not supported by tools and is considered a brainstorm-
ing task. Similarly, Microsoft Threat Modeling Tool9 pro-
vides the visual elements (e.g. boxes, arrows, ellipses, etc.)
needed to create DFDs. To some extent, this tool also

9https://www.microsoft.com/en-us/download/details.aspx?id=49168

facilitates the proper execution of the analysis, as it gen-
erates categories of threats for each DFD element. The
generated categories guide the analyst through the analy-
sis procedure of the technique. However, threat categories
generated based on the threat-to-element mapping table
only provide a hint of what type of threats could be iden-
tified. Similarly, the open source SeaSponge10 threat mod-
eling tool primarily serves as a graphical aid to represent
threats on a system model. Some primary studies present
tools whose purpose is both to aid automation of anal-
ysis and provide graphical representation. For instance,
Sheyner et al. [51, 63] present a tool for generating and
analyzing attack graphs.

Tools serving the sole purpose of graphical representa-
tion are fairly straight forward to use just by drag-and-
dropping elements on an empty canvas. Anyone with ba-
sic computer skills could easily use them. However, such
graphical tools do not support threat identification and
prioritization. The correctness and completeness of the
results submitted by an engineer using such tools is not
assured. One could argue that more expertise is required
for the proper execution of the analysis using tools that
only aid the graphical representation of threats. Our as-
sessment suggests that tools supported by knowledge-base
could to some extent leverage the security (and domain)
expertise required for threat analysis. Further, introducing
quality assurance features is very important for a novice
analyst. Finally, partial automation could help speed up
the analysis to facilitate efficient training of junior ana-
lysts. Several primary studies have the potential to be ex-
tended with tool support also targeting engineers, namely
Berger et al., Almorsy et al. [3], Chen et al. [22], KAOS
[43, 44, 45], Halkidis et al. [37], LINDDUN [48], STRIDE
[9, 10]. In summary, tool support seems to be a common
trend in the primary studies, yet tool proposals are pre-
liminary with limited validation.

4.5. Generalization across domains

As shown in Table 7 the domains of validation vary,
yet the majority are still applied to Web-based systems.
However, traditional threat analysis techniques appear to
be used in some form independently of the domain. In par-
ticular, we have discussed the commonly used varieties and
combinations of (i) STRIDE [9, 10], (ii) attack trees [26],
graphs and paths [22], (iii) MUCs [52] (iv) problem frames
[39] and threat patterns [25]. We argue that the afore-
mentioned techniques are more general in nature and are
therefore easily applicable across domains. Unfortunately,
we have found that most approaches are poorly validated
(using illustrations on toy examples) and the limited tool
support typically only aids the graphical representation of
threats, rather than the analysis of threats. The lack of
validation across different domains questions the applica-
bility of analysis techniques to current trends in software

10https://github.com/mozilla/seasponge
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engineering. Internet of Things (IoT) and Cyber-Physical
Systems (in particular automotive) have recently been at-
tracting a lot of attention.

IoT systems typically consist of a large amount of rel-
atively small devices and sensors with limited capabilities
functioning as individual agents to achieve goals. These
interconnected devices are commonly analyzed individu-
ally, thus their vulnerabilities are well known. Yet new
vulnerabilities may arise once the devices are connected.
Therefore, a knowledge-base of threats and mitigations to
the known vulnerabilities could aid in automating threat
analysis for IoT devices and in maintaining the quality of
analysis outcomes. Recent efforts have proposed analysis
approaches in the domain of IoT formalizing the cyber-
physical interactions including the malicious perspective.
For instance, Mohsin et al. [71] introduced a formal risk
analysis framework based on probabilistic model checking.
Their framework is able to generate system threat models,
which are used to formally compute the likelihood and cost
of attacks. Further, Agadakos et al. [72] have introduced
an approach for modeling cyber-physical attack paths in
IoT using Alloy. Their approach also ultimately generates
potential threats. Non-formal approaches supporting as-
pects of threat analysis in IoT have also been proposed.
For instance, Geneiatakis et al. [73] have built an attacker
model covering security and privacy threats in a typical
IoT system. Regarding usability Mavropoulos et al. [74]
presented a tool that supports security analysis of IoT sys-
tems. Rather than aiding the analysis procedure, the tool
helps to visualize assets, threats and mitigations.

In the automotive domain, Threat Analysis and
Risk Assessment (TARA) approaches are summarized by
Macher et. al. [75]. TARAs summarized in this review use
traditional threat analysis approaches (such as CORAS
[29] and Attack trees [26]) as well as approaches tailored
for the automotive (e.g. HEAVENS [75] and SAHARA [76]
are adaptations of STRIDE [9], EVITA [77] is based on At-
tack trees [26], etc). Threat analysis of novel autonomous
vehicles is extremely lengthy and complex due to heavy
safety and security requirements and compliance to stan-
dards (e.g. ISO 26262 [78]). The automotive industry to
this day relies predominantly on threat analysis performed
manually by experts. Yet there is a need to semi-automate
threat analysis procedures due to scarce resources (i.e. se-
curity experts). A risk-centric light-weight threat analysis
technique could facilitate the identification of the most im-
portant threats in only a few sessions. In order to ensure
compliance to safety and security standards, the problem-
atic parts of the system still need to undergo a systematic
threats analysis.

In summary, significant effort has been invested in re-
searching failure analysis in the domains of Cyber-Physical
Systems (e.g. Martins et al. [79]), IoT and automotive due
to the required compliance to safety standards. Therefore,
mature hazard analysis (safety) techniques have already
been established (e.g. failure mode and effects analysis
(FMEA) [80] and fault tree analysis (FTA) [81]). On the

other hand, there seems to have been less focus on threat
analysis techniques, particularly in Agile development and
DevOps, where security is often not a business priority.

5. Threats to validity

We consider internal and external threats to validity,
as defined in [82]. Considering that substantial work was
done by a single researcher, we consider a risk of subjec-
tivity as an internal threat to the validity of this study.
The bias introduced by the first author was mitigated by
including random quality controls into the review process,
particularly during the selection of primary studies and
data extraction.

Furthermore, in this work we restrict our search of the
literature by considering only top venues available in the
digital libraries mentioned in Section 2.2. Consequently,
we raise the risk of considering a non-representative subset
of the relevant existing literature, thus harming the valid-
ity of our conclusions. However, as per focusing the search
on top venues, we are confident that the selected papers
represent the most influential work done in the area of
secure design in software engineering.

In general, the validity of results of systematic liter-
ature reviews depend heavily on the external validity of
the selected studies. We attempted to mitigate this issue
by adopting a conservative exclusion criteria, disregarding
grey literature papers, position papers and short papers
(< 3 pages). Finally, due to resource limitations, not all
aspects could be extracted from the data. For instance,
further investigations could have been made regarding the
learnability in relation to tool support of the identified
threat analysis techniques.

6. Related work

To the best of our knowledge this is the only systematic
literature review on threat analysis techniques. However,
recently Cheung [7] has contributed with a brief literature
review of 8 threat analysis techniques. The main purpose
of this work was to identify the added value and impact
of adopting threat analysis techniques to cyber-physical
systems of public water infrastructures. The author sum-
marizes a subset of the primary studies analyzed in this
work.

Threat analysis is used for the main purpose of security
requirement elicitation or refinement. Hence, security re-
quirements engineering approaches may include aspects of
threat analysis. We continue to address the related work
in the areas of security requirements engineering and risk
analysis and assessment.

6.1. Security requirements engineering

Mellado et al. [83] performed a systematic litera-
ture review concerning security requirements engineer-
ing methodologies, processes, frameworks and techniques.
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The authors selected 51 primary studies to investigate.
Some of these studies are overlapping with our selection of
primary studies (namely [84], [36], [52] and [5]). Among
assessing the selected studies based on a smaller set of cri-
teria, the authors additionally present the integration of
primary studies with security standards. Our work could
also be extended to include the integration of primary
studies with security standards, which would further aid
practitioners.

Similarly, Salini et al. [85] have published a survey
on security requirements engineering approaches. The au-
thors present and compare SRE issues and methods. Addi-
tionally, the authors stress the importance of threat anal-
ysis in the early stages of software development. Yet, this
survey focused on reviewing SRE frameworks and pro-
cesses (e.g. Security Quality Requirements Engineering
methodology (SQUARE) and Security Requirements En-
gineering Process (SREP)).

Further, Fabian et al. [86] contributed with a concep-
tual framework for SRE with a strong focus on security
requirements elicitation and analysis. The authors use the
proposed framework to compare several SRE approaches.
Similar to our study, Fabian et al. also investigate prob-
lem frames and other UML-based modeling approaches.
Additionally, the authors also assess the quality of out-
comes for the selected studies. In contrast to this study,
the authors perform an unsystematic comparison of SRE
methods, as opposed to a systematic comparison of threat
analysis techniques.

Munante et al. [87] have performed a review of SRE
methods with a focus on risk analysis and model-driven en-
gineering (MDE). The purpose of their work was to iden-
tify which SRE methods are compatible with existing risk
analysis and MDE approaches. To this aim, Munante et
al. have analyzed the existing work and concluded that
KAOS and Secure i* are the most compatible SRE meth-
ods with a model-driven approach. They also concluded
that extending them with risk analysis concepts is feasi-
ble. Despite the overlap in primary studies of this work,
Munante et al. have based their analysis on a smaller set
of assessment criteria and have done so unsystematically.

Daramola et al. [88] have published a comparative re-
view on i*-based and use case-based security modeling
approaches. Their main findings show that both cate-
gories of approaches show conceptual similarities in the
modeling aspects and method process. They also found
several differences between both categories of approaches
(namely, representational, supported activities and tech-
niques, quality of outcomes and tool support).

Kriaa et al. [89] have performed a survey of approaches
combining safety and security for industrial control sys-
tems. The authors contribute with highlighting the main
commonalities, differences and interconnections between
safety and security in industrial control systems. A subset
of the reviewed approaches overlap with our primary stud-
ies (namely, CORAS, MUC). Their review also considers
Failure Mode and Effects Analysis (FMEA), Failure Mode,

Vulnerabilities and Effect Analysis (FMVEA), Fault Tree
Analysis (FTA), which are based on attack trees. In con-
trast to their work, this study only investigates threat
analysis techniques from the security perspective.

6.2. Risk analysis and assessment

Latif et al. [90] present a systematic literature review
in the field of cloud computing with a focus on risk as-
sessment. The purpose of their work was to categorize the
existing approaches and explore which areas need further
investigation. The authors selected 31 primary studies and
have looked into the existing risks in cloud computing from
the perspective of a customer and a provider. Their main
finding is that topics such as data security and privacy are
widely investigated, whereas. physical and organizational
security, have received less attention. However, their lit-
erature review is narrowly scoped only to one domain and
does not assess the characteristics of the selected works.

Cherdantseva et al. [91] present a state-of-the-art re-
view of the literature on cyber security risk assessment
methods for SCADA systems. The authors have selected
and examined 24 risk assessment methods. They provide
descriptions of the methods and assess them with an elab-
orated criteria. Among other methods, the review also in-
cludes attack trees, petri net analysis, attack and defense
modeling and CORAS. Interestingly, the authors propose
several challenges for future work, some of which are in
line with the findings of this work, namely (i) need for
improving the validation of methods (ii) overcoming the
attack-failure orientation (in this work referred to as deter-
mining the stopping condition), (iii) lack of tool support.
Yet, their review has a strong focus on risk assessment
methods in the context of SCADA systems.

Dubois et al. [92] have contributed with a systematic
approach to define a domain model of information system,
which is used to compare, select of improve security risk
management methods. The authors provide a literature
review as part of their study, which also include threat
analysis approaches CORAS, OCTAVE and Common Cri-
teria. Yet, this study contributes with an ontology, rather
then systematically reviewing the literature.

Raspotnig et al. [6] have compared risk identification
techniques for safety and security requirements. The pur-
pose of their work was to investigate whether and how the
techniques can mutually strengthen each other. Among
other methods, the authors also assess attack trees, MUC
and KAOS. Similar to this study, the authors also look into
stakeholders (in this study target audience) of the selected
methods. One of their main findings was that security
techniques can be strengthened by including better stake-
holders and communication descriptions, while the safety
techniques can benefit from a tighter integration between
the risk identification and development processes. How-
ever, this study does not look into safety or the interaction
between safety and security.
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7. Conclusions and future work

In this study, we have performed a systematic review
of 26 threat analysis approaches for secure software design.
We have developed detailed assessment criteria reflecting
our research questions, presented in Section 3. Our search
strategy included an automatic search of three digital li-
braries and snowballing. The data was extracted from the
primary studies according to the assessment criteria. The
main findings of this study show that the existing tech-
niques lack in quality assurance of outcomes. Furthermore,
the techniques lack maturity, validation and tool support.
Finally, they lack a clear definition of when the analysis
procedure is done.

As per the results discussed in Section 4, we identify
three possible directions for future work. First, a con-
nection (feedback) between the intended and actual archi-
tecture might aid in understanding the reality of analysis
outcomes. The quality of outcomes might only provide
insightful speculations without a clear link to the actual
architecture. Further, other architectural design decisions
might have lead to architectural decay [93], causing a dis-
connection to the “as-planned” security. To this aim, a
formal language for design-level threat analysis may aid
in establishing the link to the extracted architecture (e.g.
by means of adapting dynamic and/or static reverse en-
gineering approaches). Regarding the Definition of Done,
we believe that further investigations are needed to under-
stand the effects of composing analysis outcomes of sub-
systems. To this aim, the assets play an important role as
border elements between subsystems (e.g. middle-ware).
Further, a semi-automated way of composing analysis out-
comes might facilitate analysis reuse for products in differ-
ent stages of the SDL. Finally, in the context of DevOps
and Agile, we believe that analysis velocity is preferred
over analysis systematicity. Therefore, an analysis ap-
proach focusing on most important assets might be more
appropriate for such organizations. To this aim, we are
evaluating a risk-first lightweight approach for finding the
most important threats sooner in the analysis procedure
[94].
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