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Abstract

Prior research on security mechanisms for the connected vehicle focuses on the cur-
rent heterogeneous distributed embedded electronic architecture (EEA). However,
due to increased demands on data-processing and bandwidth from future function-
ality, such as automated driving and sophisticated infotainment systems, vehicle
manufacturers are now moving towards centralisation of functionality in one or more
integrated electronic control units (ECUs). In this thesis, we identify security issues
related to centralization of functionality in the automotive domain, and investigate
mechanisms which mitigate these issues. Further, we investigate the support, both
in hardware and software, for these mechanisms in the current and future automotive
embedded systems.

To identify security issues related to the integrated EEA and to identify mechanisms
which mitigate these issues, a literature review of other domains was performed. The
AUTomotive Open System ARchitecture (AUTOSAR) development partnership has
specified a software architecture with the aim of standardizing software development
in the automotive industry. We have investigate whether the identified mechanisms
are specified in the AUTOSAR framework by interviewing AUTOSAR specialists.
Some form of hardware feature is typically needed to be able to use the mecha-
nisms. Therefore, hardware requirements for each mechanism were identified and
used to evaluate the support present in ECU hardware. We have found that there
was lacking support for most of the identified mechanisms, in both the present ECU
hardware as well as in the current AUTOSAR platform. However, the hardware tar-
geted to be used in future ECUs, along with the next-generation software standard
Adaptive AUTOSAR, show support for all the presented mechanisms. This shows
that the automotive industry have realized that cyber-security will be a major chal-
lenge in the development of future connected autonomous vehicles and that is aims
to adopt a strong security posture.

Keywords: automotive security, automotive cyber-security, AUTOSAR.
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1
Introduction

Modern vehicles communicate with other devices through both wired and wireless
interfaces and the trend towards increased connectivity is expected to continue with
future deployment of car-to-car and car-to-infrastructure communication [1]. This
communication exposes the in-vehicle network to the outside world and can thus
be used as vectors for cyber attacks which can have financial, operational, privacy,
and safety impacts [2]. Cybersecurity issues have largely been neglected by the
automotive industry until recently, when a number of high profile incidents [3, 4]
exposed security flaws of commercial vehicles which could prove fatal for passengers,
and cause severe economic damages to the manufacturers. These incidents, along
with governmental initiatives to introduce legislation within the automotive area
regarding security and privacy have highlighted the importance of cybersecurity for
manufacturers.

The automotive industry is currently experiencing a paradigm shift towards the
connected autonomous vehicle. With this shift follows greater requirements for
data-processing and bandwidth, due to sensor fusion and the machine learning algo-
rithms needed to offer functionality associated with automated driving [5]. Increas-
ingly sophisticated infotainment systems further exacerbates the data processing
requirements. Current vehicles typically employ a heterogeneous distributed embed-
ded electronic architecture (EEA), where dedicated hardware components known as
electronic control units (ECUs) realise mostly independent or loosely interconnected
functions [6]. However, the increased cost, weight, and complexity due to the prolif-
eration of ECUs and communication buses means that this architecture is no longer
scalable [6]. Additionally, the data-processing requirements of future functionality is
pushing the limits of currently available microprocessor technology developed for the
automotive domain [5]. Therefore, the trend is now moving towards centralisation
of functionality in one or more high-performance nodes, which act as arbitrators
between different subsystems.

Integrating functionality to the same hardware platform will give rise to new prob-
lems, not present in the current architecture, because of resource sharing between
applications. It will be crucial to ensure that a security flaw in one application does
not influence another. Therefore, it must be possible to isolate applications by re-
stricting access to shared resources. In the current distributed architecture, resources
are physically separated and separation of information flow can be achieved entirely
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1. Introduction

by network segmentation. With small degrees of centralisation these solutions may
still be an option. But as the degree of centralisation grows, application isolation
must be solved using software mechanisms, to contain damage to the system and
user-data should an application be compromised. Further, different applications will
have different security requirements and when integrated on the same platform will
give rise to a mixed-criticality system. Finally, different security mechanisms may
require varying complexity of hardware features, something that could increase the
cost of the system. To minimize system complexity, the hardware requirements of
identified security mechanisms need to be investigated.

1.1 Purpose

The aim of this thesis is to evaluate mechanisms which mitigate security issues
associated with centralizing functionality to the same automotive hardware platform,
with regard to the current and future automotive embedded systems.

To achieve this purpose we answer the following research questions:

• What are the security threats associated with centralizing functionality?

• Which mechanisms exist that could mitigate the identified security threats?

• What metrics can be used to evaluate such mechanisms?

• What support exists for these mechanisms in automotive embedded systems?

1.2 Definition of Support

This paper often refers to the ’support’ for a mechanism in both hardware and
software. Therefore, the following section defines the scope of the term ’support’
as used throughout the paper. Some form of hardware acceleration features are
typically needed to be able to efficiently use the mechanisms identified in this paper.
Therefore, when discussing support for a mechanism in ECU hardware, we refer to
whether or not a specific ECU includes the required hardware features needed to
efficiently run that mechanism. When discussing support for a mechanism in the
automotive software market, we refer to whether or not the mechanism is specified
in the AUTOSAR framework. AUTOSAR support is desirable because AUTOSAR
compliant products can easily be used across most of the commodity ECU hardware,
independently of manufacturer.

2



1. Introduction

1.3 Method

We have studied the state-of-the-art in automotive electronic embedded systems and
the trend to centralize functionality in order to determine related security issues. We
surveyed the present automotive threat analysis to identify high level automotive
threats. These high level threats are applied to an integrated architecture in order
to generate specific threats and to identify the assets and security attributes which
these threats impact. To identify software mechanisms which mitigate these threats,
we study mechanisms used in other domains. We consider how the mechanisms can
protect each of the asset-attribute pairs previously obtained and we investigate the
hardware features required for each mechanism.

To determine the support in automotive hardware we investigate the hardware fea-
tures of common ECUs. To determine the support for the mechanism in the automo-
tive software market, we interview AUTOSAR specialists at ARCCORE, a supplier
of automotive software for Volvo Trucks.

1.4 Scope and limitations

We have investigated mechanisms to contain any breach from spreading from a com-
promised application to others. We only consider the security of applications on the
same hardware platform and applications which can communicate with the vulner-
able application via the internal network. However, we do not consider mechanisms
aimed to secure the perimeter of the system. This means that we do not consider
solutions for securing or authenticating any external communication. Future vehi-
cles with automated driving capabilities must be able to securely communicate with
other vehicles, but this is out of scope for this thesis. Instead we assume that secure
external communication exist for applications which depend on this.

We assume that applications running on the same hardware is supplied from trusted
third parties, but may contain vulnerabilities which can be used as attack vectors
to the system. If we allow applications from untrusted sources, or from an "app
store", we must consider issues such as verification of privilege requests and security
evaluations of the source code, but this is outside our scope. Neither will we consider
vulnerabilities of individual applications.

1.5 Related work

Most of the work related to security in the automotive domain has focused on the
current distributed EEA. Because of this, most of the proposed security mechanisms
are either aimed at perimeter security, or to prevent attack propagation on the
internal network. The works of Miller & Vasalek can be credited with being the
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1. Introduction

main contributors to opening the eyes of the automotive domain to the security
issues posed to them. In one paper [7], they examine the features, standards, and
network architecture of over 20 vehicles to determine their attack surfaces. For
each vehicle they list the layout of the internal vehicle network, detailing which
ECUs pose remote attack surface and which has safety critical components. Further,
they propose the use of layered security to protect against remote attacks, as the
nature of the attacks are themselves layered. In a later work [3], they detail the
remote exploitation of a Jeep Cherokee, the vehicle deemed to be most susceptible
to attack in the previous work. The attack allowed them to gain remote control over
the vehicles critical functions, and thus physical control of the vehicle. The attack
required no physical interaction or modification of the vehicle, and led to a recall of
1.4 millions vehicles.

Studnia et al. [1] provides a detailed survey of security threats related to current
automotive embedded systems, and proposed protection mechanisms. They analyze
the currently used communication protocols in automotive embedded networks, to
find threats targeting the in-vehicle network. As such, they consider only protection
mechanisms which aim to stop an attack from propagating between different ECUs
on the in-vehicle network. The HEAVENS project [8] have investigated different
available security models and proposed a new security model aimed at performing
threat analysis and risk assessment on automotive embedded systems. The model
facilitates identification of security levels for threat-asset pairs, as well as deriving
security requirements, by combining the threat-asset pair with security attributes
and a security level. However, it does not suggest any security mechanisms which
fulfill the derived security requirements according to the derived security level.

Most of the work related to integrating several functions on the same platform
mostly considers the safety issues involved and gives little consideration to security.
Obermaisser et al [9] considers fault-isolation, error containment, and state recovery
when describing an integrated system architecture for the automotive domain. In
a review covering most of the recent research in mixed-criticality systems, Burns &
Davis identifies the fundamental issue in mixed-criticality systems as "how to recon-
cile the differing needs of separation (for safety) and sharing (for efficient resource
usage)" [10]. They explain that much of the implementation work has focused on
how to safely partition a system so that critical components can share different re-
sources, while most of the theoretical research has focused on solving this issue with
task scheduling. A recent work has shown the feasibility of integrating a real-time
operating system (RTOS), running time-constrained tasks, with a general purpose
operating system (GPOS) executing the resource intensive infotainment and connec-
tivity tasks on the same hardware platform using hypervisors [11]. However, they
focus only on safety and reliability aspects of centralizing functionality, and do not
consider security implications.
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1. Introduction

1.6 Outline

This thesis is structured as follows:

• Chapter 1 - In this section the purpose of the thesis is presented and mo-
tivated and a method of how to achieve this purpose is explained. Further,
some limitations are made and some important related work is presented.

• Chapter 2 - This section provides the necessary background information.
In the first part the automotive embedded systems are explained in terms of
hardware and software architectures. In the second part automotive cyber-
security is explained including a general threat model and some history on
cyber-attacks.

• Chapter 3 - In this section issues related to centralization of functionality
are investigated. Based on these issues and some of the content in Section
2, a threat analysis is performed to identify what kind of protection that is
required.

• Chapter 4 - Based on the threat analysis in section 3, the chosen security
mechanisms are presented. Each mechanism is explained and evaluated with
regard to known strengths and weaknesses. Further, the hardware require-
ments for each mechanism is investigated.

• Chapter 5 - The first part of this chapter evaluates the breadth of protec-
tion offered by the chosen security mechanisms. The second part investigates
the support for these mechanisms in automotive hardware. The final part
investigates support in standardized software frameworks.

• Chapter 6 In this final chapter of this thesis, a conclusion is presented and
some of the results from the evaluation in Chapter 5 are discussed. Further,
some recommendations for future work is made.
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2
Background

2.1 Automotive embedded systems

The use of embedded electrical and electronic (E/E) systems have revolutionized the
automotive industry in the latest decades. A majority of automotive innovations
would not be possible without the use of E/E systems and software, which are now
essential to much of the functionality of modern vehicles. Embedded systems help
control the movement of the vehicle, the chemical and mechanical processes taking
place in it, and perhaps most importantly, to help ensure the safety of its passengers
[12]. More recently, embedded systems are also used to entertain passengers and
establish connectivity with the rest of the world, through Internet connectivity and
other wired and wireless interfaces [12]. Perhaps the most important function of
automotive embedded systems is to help achieve the stringent safety requirements
posed on the vehicle. Passive safety systems refer to those systems which aim to
reduce the affect of potential accidents, such as airbags and seat belts, while active
safety systems work preemptively with the aim to avoid accidents. Examples of
active safety systems are anti-lock braking, lane-keeping, and electronic stability
control.

2.1.1 Current distributed architecture

Current vehicles comprise of a complex distributed system of sensors, actuators,
dedicated electronic control units (ECUs), and several internal communication net-
works. This architecture is typically referred to as a federated architecture, where
an ECU is responsible for one specific task or functionality and communicates with
sensors, actuators, and other ECUs over one of several communication networks to
perform their task. This paradigm arose because automotive manufacturers typ-
ically purchase subsystems designed for specific functionality from suppliers, and
integrate them into their vehicle, in order to reduce costs [13]. By connecting ECUs
over communication buses, functions distributed over several ECUs could be real-
ized. These functions support tasks of differing constraints and requirements, as
specified by their functional domains, which led to the introduction of several types
of communication networks, to suit the needs of each domain. This has resulted
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2. Background

in a distributed architecture consisting of as many as 100 ECUs [14] in a plethora
of ECU-subsystems connected by many different in-vehicle networks such as CAN,
MOST, etc. An example of a federated architecture is shown in Figure 2.1.

Figure 2.1: Example of a federated architecture [15].

The severe hardware limitations of ECUs in the current heterogenous EEA make
many traditional security mechanisms unsuitable or impossible to employ. They
would either take too long to compute, violating real-time constraints, or be so
weak that an attacker could easily break them [2]. Centralisation of functionality
may have the added benefit of allowing traditional security mechanisms to be used
to protect the system.

2.1.2 Centralization of functionality

In recent years the current distributed automotive architecture model has been in-
creasingly challenged due to the increased system complexity, costs due to the pro-
liferation of electronic components, under-utilization of ECUs, and increased func-
tional complexity [6]. As car manufacturers continue to add functionality to their
vehicles by purchasing self-contained hardware platforms, in the form of ECUs, the
total cost of embedded electronics rises to unwanted levels. Most of the commonly
used communication buses can only accommodate a certain number of ECUs, which
means that the number of buses grows with the number of ECUs. The increased
number of electrical components add weight to the vehicle, which leads to reduced
fuel efficiency. The use of dedicated ECUs for infrequently used functions, such
as seat or mirror adjustment, means unnecessary added weight and occupied space
but also wasted computational power as these ECUs are idle for a majority of the

8



2. Background

time. Finally, future functionalities associated with autonomous driving will fuse
data from multiple sensors and require huge amount of data-processing, which will
push the limits of the currently available microprocessor technologies [5].

To solve these problems, several automotive manufacturers have started to rethink
their architectures, moving to an integrated architecture. The idea is to use a central
processor to serve as an arbitrator and decision maker between different subsystems,
designed to perform the same work as multiple ECUs in order to reduce system
complexity, cost and mass [5]. Because the heavy data processing would be done
centrally, future generations of sensors can be made smaller and more affordable,
as there is no longer a need to include high-end microprocessors. This design is
more future proof as there is enough memory and processing headroom to add more
functionality.

2.1.3 AUTOSAR

AUTOSAR (Automotive Open System Architecture) was founded in 2003 and is a
set of specifications detailing software architecture components and specifying their
interfaces. The goal of AUTOSAR is to introduce an open industry standard for the
automotive software architecture between manufacturers and suppliers in order to
decrease the growing complexity of software [16, 17]. There are nine core companies
developing AUTOSAR, including Ford, BMW and General Motors [18]. AUTOSAR
creates an abstract layer of the underlying hardware, thus software running on top
of AUTOSAR is hardware independent. AUTOSAR also enables several software
modules to run on the same ECU independently of the suppliers [17].

2.1.3.1 AUTOSAR Classic

On the highest abstractions level AUTOSAR Classic consists of three software layers:
Basic Software, Runtime Environment, and Application. The Basic Software layer
is further divided into four layers as shown in Figure 2.2.

Microcontroller Abstraction Layer - Contains internal drivers which has direct
access to the microcontroller and makes higher software layers independent of the
microcontroller [19].

ECU Abstraction Layer - Contains drivers for external devices and also interfaces
the drivers of the Microcontroller Abstraction Layer to offer an API for access to
any peripheral or device. Makes higher software layers independent of the ECU
hardware layout [19].

Complex Drivers - Enables the possibility of implementing special purpose func-
tionality which might not be specified within AUTOSAR Classic [19].

Service Layer - Provides basic services for applications, for example operating

9



2. Background

Figure 2.2: The layered software architecture of AUTOSAR Classic [19].

system functionality, vehicle network communication, and cryptographic services
[19].

Runtime Environment - Enables AUTOSAR software components to communi-
cate with other type of components, within and/or outside the ECU, and services.
Makes the software independent from the mapping to a specific ECU [19].

AUTOSAR Classic has three main security mechanisms; Crypto Service Manager
(CSM), Crypto Abstraction Library (CAL), and Secure On-Board Communication
(SecOC). The CSM is located in the Service layer and provides cryptographic ser-
vices to applications on higher levels while CAL is a static library, very similar to
CSM in functionality, but also offers cryptographic services to software modules in
the Basic Software layer [20]. CSM has the advantage of utilizing cryptographic
hardware if present, while CAL can not. There are no cryptographic algorithms
defined for CSM or CAL by AUTOSAR, instead the implementer chooses which
algorithms to include [20]. SecOC offers an authentication mechanism for critical
data which can be utilized by any ECU requiring secure communication. This mod-
ule can provide protection against injection, alteration and replay attacks on the
in-vehicle network [16].

2.1.3.2 Adaptive AUTOSAR

The AUTOSAR Adaptive Platform for Connected and Autonomous Vehicles is de-
signed to meet the new use cases emerging with the connected vehicle. The main
drivers for the initiative are use cases such as highly automated driving, Car-2-X
applications, vehicle-in-the-cloud and increased connectivity. Because of this, future
cars are expected to have a heterogeneous electronic architecture, mixing deeply em-
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2. Background

bedded systems and more dynamic systems, creating a need for a complementing ar-
chitecture. The Adaptive platform is meant to close the gap between the Classic AU-
TOSAR platform, which focuses on real-time requirements and safety, and dynamic
applications needing high computing power and security. It will support adaptive de-
ployment, complex microcontrollers, and interaction with non-AUTOSAR systems
[21]. In contrast to the Classic Platform, the Adaptive Platform Runtime Environ-
ment dynamically links services and clients during runtime [22]. The architecture
of Adaptive AUTOSAR is shown in Figure 2.3

Figure 2.3: The software architecture of Adaptive AUTOSAR [21].

2.2 Automotive cybersecurity

2.2.1 History of automotive cyber-attacks

Previous to the concept of the connected vehicle, automotive OEMs did not con-
sider cyber-security that much since an attack was only possible if the attacker had
physical access to the vehicle. The modern vehicle however, has multiple wireless
connections to outside networks and devices, for example the Internet and the con-
nection of a smart device over bluetooth. Additionally, vehicles will communicate
with each other and also the infrastructure with the common goal of increasing
safety, efficiency, and driving experience. As the complexity of the connected ve-
hicle increases, so will the security threats by the increase of attack surface. The
attack surface comprises of all accessible services and connection points of a vehicle
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2. Background

and is used to gain unauthorized access to the vehicle system. Without an attack
surface, vulnerabilities can not be exploited to launch attacks. However, the attack
surface of the connected vehicle will only continue to grow and securing the entire
attack surface is not feasible, thus perimeter security is no longer enough. As briefly
presented below, history has shown that systems will be breached and there needs
to exist additional levels of security closer to individual resources.

In 2016, researchers from the Chinese security firm Tencent discovered a flaw in
the WiFi connectivity of all Tesla car models that would allow them them to gain
remote access to the driving and braking system [16]. The attack was made possible
due to four independent vulnerabilites [23]. First, the researchers set up a fake
Tesla WiFi hot-spot by simply using the same name and password used in Tesla
dealership hot-spots. The car would then auto-connect to the fake hot-spot when it
was in close proximity and the hot-spot was configured so that the Tesla webbrowser
would load a webpage designed by the researchers when it connected. Second,
a vulnerability in the webbrowser allowed the researchers to run malicious code,
fetched from the malicious website, in the browser. Then, a vulnerability in Tesla’s
Linux operating system gave the researchers full privileges on the car’s head unit.
Finally, a vulnerability allowed the researchers to overwrite the firmware of a gateway
that separated the head unit from the internal CAN network, thus providing them
with access to the driving and braking system.

This attack is a good example of how one small vulnerability can jeopardize the
entire system. With additional security mechanisms the attack could have been
stopped at four different stages. The concept of defence-in-depth should be applied
in automotive security to prevent one breached system to cause further damage.

Automotive security involves more than just the functional safety of the vehicle,
it should also consider other issues, like privacy. The Nissan LEAF is one of the
most sold electric cars in the world [4] and comes with an companion-app which the
owner can use to observe the status of the car. Researcher Troy Hunt discovered
a vulnerability in the app that allows anyone to collect sensitive information, like
the GPS history of the car, with a simple GET message [4]. No authentication is
needed, besides providing the VIN (Vehicle Identificaiton Number) of the car, which
is physically displayed on the windshield of the car. Although this vulnerability
doesn’t pose any direct danger to the passengers, it can still be used for malicious
activity. The GPS history can be used to map the driving patterns of the owner
and can be used by burglars to estimate which hours of the day the owner is not at
home.

2.2.2 Systems cybersecurity engineering

To reduce the likelihood of successful cyber-attacks on vehicles principles of sys-
tem cybersecurity engineering should be applied to the design and development of
cybersecurity-critical vehicle systems. A cybersecurity-critical system is a system
which may incur financial, operational, privacy, or safety losses if compromised due
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to a vulnerability in the system [24]. Vehicles are safety critical systems that may
cause harm to life, property, or the environment should it not operate as intended.
Therefore they also inherently constitute a cybersecurity-critical system since an at-
tack on the system may incur safety losses. Vehicle safety has long been a focus for
the automotive industry, while cybersecurity has been neglected. However, due to
increased connectivity it is no longer acceptable to assume that safety-critical sys-
tems are immune to security risks. This has led several industry alliances to release
guidelines for securing cyber-physical vehicle systems [24, 25, 26]. The consensus
advocates a holistic approach to securing the connected vehicle by building security
into the design, rather than being added on to an existing design .

Clearly there is some overlap between system safety engineering and system cyber-
security engineering, since all safety critical systems are also cybersecurity-critical.
However, the focus of cybersecurity engineering is much broader, as it also includes
non safety related systems by considering privacy, operational, and financial losses.
The connected vehicle is susceptible to each of these aspects; privacy related infor-
mation may be stored in infotainment systems or diagnostics; a high profile attack
may incur financial losses due to recalls or loss of OEM reputation; finally, features
or functionality might be altered to increase the operational performance of the ve-
hicle. Further, potential security threats involve intentional malicious actions which
are more difficult to address than safety hazards which occur due to random hard-
ware failure. An acceptable risk level of a safety hazard can be claimed by applying
statistical analysis while assessing the risk of a cybersecurity threat must consider
factors such as the experience and knowledge of an attacker. Further, the malicious
intent of an attacker means that a state considered safe from a safety engineering
perspective must be assessed as to whether it can be exploited by an attacker to com-
promise the system from a cybersecurity perspective. Finally, cybersecurity risks
will evolve over time as motivations and capabilities of attackers change. This makes
cybersecurity engineering especially difficult, because the system must be defended
against vulnerabilities which did not even exist at the time of implementation.

2.2.3 Designing secure automotive systems

To allow for a system to protect itself and the information it processes against
attacks it must be architected, designed, and implemented with security in mind
[27]. The aim when designing for security is to reduce the attack surface of the
system, and limit damage in case of a compromise. This is achieved by key design
principles, such as employing layered defenses, restricting access to system services,
and applying the principle of least privilege.

No complex system can achieve perfect security, instead designers must assume that
the systems contains security flaws and design to minimize harm should these flaws
be abused. This is especially true for the automotive domain, where OEMs often
purchase ready-made software from suppliers without access to the source code. A
layered approach to security hardens the vehicles electronic architecture against po-
tential attacks and mitigates the ramifications should an attack be successful [26].
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Every system component which impacts security should be secured by a security
mechanism appropriate for the associated level of risk. At the application layer, ap-
propriate perimeter defenses should be applied to secure specific applications against
external threats. To further strengthen the security of the system, additional secu-
rity mechanism should be applied at lower layers to contain damage if a vulnerability
at the application layer is exploited. Security mechanisms at these layers will be
crucial for securing safety-relevant applications. These applications will typically
not be directly exposed to external threats, but an attacker may try to use vulner-
abilities in other, externally facing, applications to gain control of cyber-physical
features.

Software vulnerabilities may allow an attacker to gain control of legitimate processes
and execute malicious code assuming the identity of an authorised user, thus fully
utilising all of their privileges. To allow for secure simultaneous execution of applica-
tions and protection of data at rest, the default state of the system should promote
security by minimizing its attack surface. This means running software with only
the privileges, services, and resources it needs to perform its function.

2.2.4 Threat model

2.2.4.1 Potential assets

An asset can be anything that has some kind of value, and the value itself can be
highly abstract. Parts of a system can be assets, where the system as a whole is also
an asset with equal or greater value than its parts. Thus, the assets form a hierarchy
which can be observed from different points of view. For a fleet owner, the fleet is
an asset as well as each vehicle in the fleet. From this view, each vehicle is like a
black box and assets within the vehicle are not easily identified. However, from the
view of the OEM’s, each vehicle is like a white box and can be divided further into
lower level assets. Beside the physical view of assets, there is also a functional view.
A vehicle feature is a typical functional asset; a feature can be disabled by default
and later enabled when paid for, thus having a value and considered an asset. The
HEAVENS project [28] has presented assets of the automotive domain in terms of
activity, physical view, and functional view in table 2.1.
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Activity Physical view Functional view
Computing CPU or dedicated hardware

accelerator
Processing task

Communication Wired bus or network, wire-
less link

Send/receive messages on
logical channel

Storage Memory (RAM, ROM, flash) Read/write data from/to ad-
dress spaces

Acquisition Sensors (wired, wireless) Get measurements from the
environment

Command Actuators Do actions on the environ-
ment

Implementation Software and data Implemented feature, func-
tionality and service

Product Vehicles produced by OEM Provided services, features
and OEM reputation

Back office OEM Back office contain-
ing databases and application
store

Diagnostics services, Soft-
ware update, etc.

Table 2.1: Assets in terms of activity, physical view and functional view [28].

2.2.4.2 Security attributes

Security attributes are a set of attributes of on asset and/or an item that are used
to define and enforce security requirements [28]. The CIA triad (Confidentiality,
Integrity, Availability) has been a core principle of cyber-security for decades and
these attributes are often referred to as the primary security attributes. However,
cyber-security has evolved drastically in recent years and is nowadays one of the
central concerns in almost every industrial domain. This has motivated the extension
of the CIA triad to include additional security attributes. The HEAVENS project
[28] consider eight security attributes, listed below, in their model.

• Confidentiality - The property of information not made available or disclosed
to an unauthorized party.

• Integrity - The property of protecting the completeness and accuracy of data
or an entity.

• Availability - The property of being accessible and usable when needed by
an authorized party.

• Authenticity - The property that an entity can be verified and trusted as
what/who it claims to be.

• Authorization - The property of access control, to access privileges granted
to an entity or the process of granting an entity privileges.
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• Non-repudiation - Also known as auditability, is the property of two parties
not being able to deny processing of information sent/received.

• Privacy - A special form of the confidentiality attribute. Privacy applies to a
set of information and an entity, and the property is guaranteed if this relation
is confidential.

• Freshness - The property of uniquely identifying a message. This basically
means adding a unique time stamp and can be used to prevent replay attacks.

2.2.4.3 Generic automotive threats

The EVITA project [29] has considered the following four high level security objec-
tives:

• Operational – to maintain the intended operational performance of all vehicle
and ITS functions.

• Safety – to ensure the functional safety of the vehicle occupants and other
road users.

• Privacy – to protect the privacy of vehicle drivers, and the intellectual prop-
erty of vehicle manufacturers and their suppliers.

• Financial – to prevent fraudulent commercial transactions and theft of vehi-
cles.

Based on these security objectives, the EVITA project [29] has performed threat
identification by using ’dark side’ scenarios and attack trees to identify the following
seven generic security threats for the automotive industry:

• Interference with safety functions of a specific vehicle

• Interfere with safety functions of many vehicles or traffic management func-
tions.

• Theft of vehicle information or driver identity, vehicle theft, fraudulent com-
mercial transactions.

• Interference with operation of vehicle functions.

• Interference with operation of traffic management functions or tolling systems.

• Avoiding liability for accidents, vehicle or driver tracking.

• Interference with operation of vehicle functions, acquiring vehicle design in-
formation.
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Security analysis of the integrated

architecture

This chapter details security issues related to centralisation of functionality in one
or more integrated ECUs in an automotive system.

3.1 Issues related to centralization

Integrating functionality to the same physical hardware means that applications
will be sharing resources, such as the memory, network interfaces, etc. This can
have great implications for the security of the vehicle if access cannot be properly
restricted. Some applications may store privacy sensitive data, such as locational
information or driving patterns which must not be accessed by other applications.
Thus, the system must implement a security policy that specifies who or what may
access a specific resource and the type of access permitted. Further, it must be
possible to ensure that one application cannot starve others of access to shared
resources.

The degree of centralization and cooperation between applications will determine to
what extent access to shared resources must be restricted. Simple ECUs, executing
only a few applications with similar resource demands, may be sufficiently protected
using only static resource allocation. However, a powerful ECU executing a diverse
set of applications with varying resource usage will need more complex mechanisms,
to ensure that system breaches can be contained. These mechanisms must support
both fine and coarse grained specifications to allow access to be regulated at the
level of individual entities and files, as well as classes of entities and resources [30].

3.1.1 Memory corruption

Separating access to physical memory is crucial to ensure spatial isolation of ap-
plications and limiting damage from potential security breaches. A benefit of the
federated architecture is that only one application has access to the physical mem-
ory of the ECU. In an integrated architecture several applications must share the
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same physical address space which means that mechanisms to manage memory ac-
cesses are needed. However, securing an ECU against malicious actors requires
more sophisticated mechanisms than what safety standards require. Ensuring fault-
containment simply means that applications must not be allowed to access regions
of memory belonging to other applications [31]. Securing against intentionally ma-
licious actors means that extra measures must be taken to also ensure that an ap-
plication cannot corrupt its own assigned memory space. The reason for this is that
an attacker may be able to abuse a vulnerable application such that only memory
belonging to the application itself is corrupted to gain access to the system.

An attacker can gain remote code execution by abusing programming errors which
allow writing more data to a buffer than what is actually allocated to it, causing
subsequent memory addresses to be corrupted. Stack smashing attacks abuse such
buffer overruns to overwrite memory addresses which belong to the applications call
stack, allowing the attacker to modify the return address of a functional call to
point to attacker-controlled data [32]. A variation of this attack is return oriented
programming [33], where the return address is modified to point to subroutines
already present in the executable memory of the process, such as linked library
functions or system calls. Buffer overflow vulnerabilities can be mitigated by simply
validating the size of the input data, but OEMs typically do not have access to source
code of commodity software. Thus, protection against such vulnerable applications
must exist at system level.

3.1.2 Data storage

In a federated architecture where each ECU only implements one application, in-
formation required by the application could be stored in non-volatile memory. The
integrated architecture, along with the introduction of new functionality, will bring
a greater need to store larger amounts of data, and to efficiently share data be-
tween applications. Filesystems are typically used to control how data is stored and
retrieved. Some applications may store privacy sensitive data, such as locational
information or driving patterns, in files which must not be accessed by other appli-
cations. Thus, the system must implement a security policy that specifies who or
what may access a filesystem and the type of access permitted

3.1.3 Denial-of-Service

Protection against denial-of-service (DoS) attacks is crucial to uphold the tem-
poral isolation of safety critical partitions and to ensure that applications cannot
starve each other of system resources. Temporal isolation of partitions is typically
achieved by running tasks on real-time operating systems with deterministic exe-
cution scheduling to guarantee each task sufficient computing time and resources
to meet their timing constraints [10]. When tasks with hard real-time constraints
are integrated on the same ECU as applications assuming only best-effort deliv-
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ery, a compromised application cannot be allowed to interfere with the execution of
another application by starving it of resources.

Resource exhaustion attacks are a form of DoS attack where a vulnerable applica-
tion is abused to starve the rest of the system of some resource, such as memory,
CPU-time, disk, or operating system descriptor tables. A Fork bomb is an attack
which targets both CPU-time and the operating systems process-table by repeatedly
creating new processes with the fork system call [34]. Regular Expression Denial of
Service attacks are a form of algorithmic complexity attack which uses the expo-
nential worst case execution times of regular expressions to exhaust CPU-time [35].
Attacks such as SYN flooding and ping flooding use network packets to exhaust the
targets descriptor tables and bandwidth respectively [36]. These attacks are more
effective when the attackers computational power and bandwidth is larger than that
of its target. The integrated architecture will have one or more nodes with much
greater computational power than the rest of the in-vehicle network which makes
such attacks very powerful. A compromised process on a more powerful node may
be used to flood the network such that other nodes will be denied communication.

3.1.4 Message injection

Trust between applications is crucial to ensure correct operation of any distributed
system where the computational outcome depends on data passed in messages from
other applications [37]. This is especially true for automotive systems where the
safety of the vehicle and passengers depend on the authenticity and integrity of
communicated data. If an application blindly trusts received messages an attacker
who is able to tamper with messages or inject messages of their own choosing may
be able to fool other applications to perform unsafe operations or gain elevated
privileges on the system. Further, even if the senders authenticity can be verified,
an attacker with access to old legitimate messages may use these messages to perform
replay-attacks to fool the receiver.

3.2 Threat analysis

To derive threats for the integrated automotive EEA we assume an architecture
with at least one centralized ECU integrating several applications. This integrated
ECU is assumed to be connected to an in-vehicle network consisting of several other
nodes. One example of such an integrated architecture is the domain-controller
architecture, shown in Figure 3.1.

To identify specific threats for the integrated architecture, we assume that one appli-
cation in the ECU has been compromised and consider how the issues identified in
Section 3.1 could be used to spread an attack to realize the generic threats detailed
in Section 2.2.4.3. For each identified specific threat, we determine which asset and
security attribute it affects. To simplify the analysis, the only considered attributes
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Figure 3.1: Domain controller architecture.

are Confidentiality, Integrity and Availability, which is a subset of the attributes
described in Section 2.2.4.2. Because of the limited time available for this project,
the only considered assets are computing, memory, storage, and communication.
Further, we only consider the generic threats which affect one specific vehicle. The
result is a set of specific threats, each with an associated asset-attribute pair. The
aim of this threat analysis is not to identify all possible threats, but rather to identify
a set of threats to fit within the scope of this thesis. The derived specific threats,
grouped per generic threat, are presented below:

• Interference with safety functions of a specific vehicle.

– T1: A compromised application may tamper with the memory space of
a safety-related application.

∗ Assets: Memory

∗ Attribute: Integrity

– T2: A compromised application performs a denial of service attack on a
safety-related application.

∗ Assets: Memory, Storage, Computing, Communication

∗ Attribute: Availability

– T3: A compromised application injects false sensor data on the in-vehicle
network to affect a safety-related application.
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∗ Assets: Communication

∗ Attribute: Integrity

• Theft of vehicle information, driver identity, or intellectual property.

– T4: An attacker uses a compromised application to read stored privacy
related information or intellectual property.

∗ Assets: Storage

∗ Attribute: Confidentiality

– T5: An attacker uses a compromised application to eavesdrop on privacy
or vehicle related information sent on the in-vehicle network.

∗ Assets: Communication

∗ Attribute: Confidentiality

• Interference with operation of vehicle.

– T6: An attacker may use a compromised application to modify software
or data related to the operation of the vehicle.

∗ Assets: Storage, Memory

∗ Attribute: Integrity

– T7: An attacker uses a compromised application to inject false sensor
data on the in-vehicle network to affect another application related to the
operation of the vehicle.

∗ Assets: Communication

∗ Attributes: Integrity

– T8: A compromised application performs a denial of service attack on
another application related to the operation of the vehicle.

∗ Assets: Memory, Storage, Computing, Communication

∗ Attribute: Availability

• Avoiding liability for accidents or hiding vehicle tracking informa-
tion.

– T9: An attacker uses a compromised application to tamper with stored
logging data.

∗ Assets: Storage

∗ Attribute: Integrity
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– T10: An attacker uses a compromised application to inject false data to
the OEM.

∗ Asset: Communication

∗ Attribute: Integrity
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4
Security Mechanisms

In this chapter, we study mechanisms used in other domains to mitigate the threats
identified in section 3.2. We investigate how these mechanisms can be used to pro-
tect assets with regard to asset-attribute pairs derived from the identified threats.
Further, problems and security vulnerabilities related to each mechanism are inves-
tigated and advantages are detailed. Finally, the required hardware features of each
mechanism is identified in order for us to later be able to determine the support for
each mechanism in automotive embedded systems.

4.1 Access Control

4.1.1 Discretionary Access Control

The Trusted Computer System Evaluation Criteria (TCSEC), also known as the
orange book, defines Discretionary Access Control (DAC) as “a means of restricting
access to objects based on the identity of subjects and/or groups to which they
belong. The controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (perhaps indirectly) on to
any other subject (unless restrained by mandatory access control)” [38].

The UNIX access control system, which has been a part of UNIX based systems for
decades, is a widely used implementation of DAC [39]. The UNIX access control
system has three types of permissions on an object; read, write and execute, and
the owner of the object decides which permissions other subjects have.

DAC can be used to protect the confidentiality and integrity of storage by setting
appropriate subject permissions on file objects. For example, if a subject does not
have read or write permissions on a file, the confidentiality and integrity of the file
is protected from that subject. The DAC permissions are typically stored in either
Access Control Lists (ACLs) or Capabilities Lists. When using ACLs, each object
has a list with subjects and their individual permissions, and when using Capabilities
lists, each subject has a list with its permissions for every object. These lists need to
be securely stored in memory so that no unauthorized process can overwrite them.
To further enforce the access control policy, processes must execute in user mode
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and access requests must be handled by the kernel.

The primary benefit of DAC is that it offers fine-grained control over system objects,
which can be used to implement least-privilege access. The implementation of DAC
is intuitive and can for the most part be invisible to users [40]. DAC is also a very
dynamic policy since subjects can pass object-permissions to eachother without the
involvement of a central authority.

In a typical UNIX system, a user is a passive entity for whom authorization can be
specified and a process executes on behalf of a user. However, DAC does not make
this distinction. When a process submits an access request, DAC only considers
the privileges of the user who owns the process. This makes DAC vulnerable to
processes executing malicious code exploiting the permissions of the user. In Linux
systems, a process runs with the privileges of the effective user id, which can differ
from the real user id when running setuid programs. In a setuid program, privileges
can be escalated by temporary setting the user id to a user id with higher privileges,
like root, to perform some privileged operations. If such a program can be exploited
the attacker can gain total control of the system by acting as root [41].

Further, DAC does not enforce any control of information flow once a process ac-
quires information. Because of this, processes can leak information to users who
does not have the permission to read the information, breaking confidentiality [42].
Additionaly, verification of security principles for a DAC system is very difficult
since users are allowed to share permissions of owned objects [40].

Hardware requirements:

• Dual-mode

• MPU/MMU

4.1.2 Mandatory Access Control

Mandatory access control (MAC) can be defined as any access control mechanism
where the security policies are enforced by a central authority, and can not be
affected by user actions [42, 40]. Unlike DAC, MAC makes the distinction between
user and subject. Users are humans accessing the system while subjects are processes
executing on behalf of users.

There are many implementations of MAC for different operating systems. For ex-
ample, Android uses SELinux to enforce MAC on all applications [43]. SELinux is a
security enhancement to Linux originally developed by the national security agency
(NSA) [44], and based on its popularity and origin it will be used to exemplify
the principles of MAC. In SELinux systems, access to resources must be explicitly
granted. This means that no process can access any resource by default, thus the
confidentiality and integrity of storage is protected by default. To enforce the access
control policy, processes must execute in user mode and access requests must be
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handled by the kernel.

Access is explicitly granted, with access rules, by the system administrator. The
primary access control model in SELinux is domain type enforcement, where each
subject belongs to a domain and each object has a class and a type [44]. Consider
the following access rule:

allow user_t bin_t : file {read write}

This rule allows any process who belongs to the user_t domain to read and write
from/to any file object with a type of bin_t. Thus, configuring SELinux is mainly
about applying this type enforcement across labels, and properly labeling subjects
and objects [45].

MAC can be used to achieve complex functions, for example to create a sandbox.
In SELinux systems, running the command sandbox will start the cmd application
within a strictly confined SELinux domain [46]. The sandbox domain only allows
read and write to the standard input and output descriptors by default. If specified,
an alternative home directory with copies of chosen files can be created for the
sandbox. The default SELinux policy does not allow the sandbox access to any
other files, capabilities or networks access.

Another example is to use MAC to enforce a strict network policy. SELinux has
labeled several network objects including interfaces, internet nodes, and ports, and
access control can be applied to all of these objects to enforce a network policy.
Consider the following SELinux rule:

allow user_t http_port_t : tcp_socket {send_msg recv_msg name_bind}

This rule allows any process under the user_t domain the ability to bind to port
80 and also send and receive tcp messages on port 80. Note that if no network
rules exist, the default SELinux policy would deny all processes any type of network
capabilities. Thus, the integrity of communication can be protected using MAC.

MAC systems offer strong added security assurances along with defence in depth,
and the design allows for fine grained decision making [45]. Further, the permissions
of a process do not depend on the user who owns the process, which make MAC
systems less vulnerable to malicious processes compared to DAC systems. MAC
can also be used to control the flow of information using multilevel security (MLS).
The Bell-LaPadula model uses MLS to control the flow of information by assigning
security levels to subjects and objects [40]. A subject may not read from an object
with a higher security level and a subject may not write to an object with a lower
security level.

In a MAC system with many subjects and objects, access control lookups can be
expensive. To somewhat ease this problem, a software cache can be used to store the
latest lookups and results [44]. Access requests would then first be checked against
the cache before a lookup is made in case of a miss. Vulnerabilities in MAC systems
are typically found in the policy itself or the applied rule-set. The rule-set can be
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very complex and hard to implement and maintenance of the rule-set can also be
very challenging. A single weakness in the policy or rule-set can compromise the
entire system by opening up a significant attack surface [45]. A MAC system relies
on the fact that the operating system kernel can be trusted [40]. This fundamental
limitation is a problem when considering the large kernel attack surface, proving
that MAC cannot be the sole defence of the system.

Hardware requirements:

• Dual-mode

• MPU/MMU

4.2 Static memory allocation with memory pro-
tection

Many simpler embedded microcontrollers in the automotive domain often comprises
of a simple task-switching real-time operating system and its tasks, which together
have been statically linked as a single monolithic entity. Thus, the memory layout
is fixed at load time and represents the entire system. The memory architecture
of these microcontrollers integrates some amount of RAM and ROM on the chip.
The ROM is also known as program memory and is a non-volatile memory that
primarily stores instructions, along with constants and static data values. The
program memory typically comes in the form of FLASH memory (other available
kinds are EPROM, EEPROM etc) which is read-only during runtime and requires
a separate reprogramming procedure to write to. Upon boot, code is executed
directly from the program memory without being copied to RAM before execution.
The RAM is used to store mutable data to record changes in state as the program
executes. In this memory architecture, the RAM and ROM are often uniformly
mapped in different regions to the same address space along with other special
purpose regions which allow programs to directly address the registers of on-chip
peripherals and any external RAM or devices (a method known as memory-mapped
I/O).

All the required memory is allocated at compile time, and the compiler divides the
memory into different segments for code, read-only data, and read-write data. The
code and read-only data segments are flashed directly to the microcontroller by
loading it to the ROM, while the RAM is initialized during system boot. Because
all the memory is statically allocated during compile time, the amount of system
memory and its layout can be fully determined at load time. Thus, there is little
risk of any runtime errors due to memory management, as the compiler ensures that
the allocation cannot exceed the maximum available memory. Further, without the
need for dynamic memory management it is possible to store code or data belonging
to different applications/tasks in different contiguous memory segments.
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A memory protection unit (MPU) can be used to divide the addressable memory
map in a number of regions and to specify access permissions for memory addresses
in each region. Most MPUs allows defining read and write permissions on data
memory accesses, as well as whether instruction fetches are allowed within a region.
Disabling instruction fetches from certain memory addresses is known as executable
space protection and is one way to protect against buffer overflow attacks. Any
attempt to access memory locations which are not permitted by the region settings
will raise a memory management exception. The MPU can be used to [47]:

• Prevent user applications from corrupting data used by the operating system

• Separate data between processing tasks by blocking tasks from accessing oth-
ers’ data

• Define memory regions as read-only so that vital data can be protected

• Detect unexpected memory accesses (such as stack corruption)

An MPU is typically controlled by a number of registers which are used to configure
regions. At minimum there will be registers which specify the region to be defined,
the starting address of that region, the size of that region, and the access permissions
for that region. The MPU must be reprogrammed by the operating system on each
context switch to allow applications to access their code and data, as well as any
other resources they need. However, this is done simply by writing to the MPU
control registers which have low latency and a minimal impact on context switching.

The number of regions which can be defined, and thus the granularity of memory
protection, is dependent on the MPU used. The ARM MPU also allows defining
subregions and a default background memory map for privileged access only. This
can be used to define several privileged regions by means of one background region,
to protect privileged code (such as the OS kernel and exception handlers) and data.
Overlapping regions are then defined which take precedent and gives user appli-
cations permission only to the regions they explicitly need access to. Thus, static
memory allocation together with a MPU can protect the integrity and confidentiality
of an applications memory since all memory accesses are checked against permissions
set in the MPU. Since the memory is statically assigned at compile time it also offers
improved Availability, as tasks/processes are not able to dynamically request more
memory in order to starve other tasks of memory resources. Further, if external
storage is accessed by memory mapped I/O, then the integrity and confidentiality
of storage is protected.

Hardware requirements:

• Dual mode

• MPU
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4.3 Virtual memory

Virtual memory is a memory management technique that has become an essential
component of contemporary operating systems [48]. This technique allows sepa-
rating virtual memory, as perceived by a process, from physical memory. Its three
basic elements are the virtual address space, the main (physical) memory, and the
auxiliary memory [49]. A process’s virtual address space is its own virtual view of
how it is stored in main memory [50]. This view is typically a contiguous range of
virtual memory addresses, starting at address zero and differs from how it is actually
stored in physical memory.

The physical memory is organized in chunks of linear memory addresses called mem-
ory pages and the pages which make up a process need not be stored contiguously in
physical memory. Memory pages which have not yet been loaded in main memory,
or that have been replaced by another page, are stored on disk (auxiliary memory).
The operating system, together with the address translation hardware, is responsi-
ble for fetching a programs memory pages on demand, allowing the execution of a
program that is not completely loaded in memory.

The main benefits of virtual memory are increased system utilization, due to being
able to keep more processes in main memory, and to conceptually use more memory
than is physically available. However, it also has the added benefit of increased
security due to process memory isolation [48]. All modern operating systems rely
on a model of execution where an instance of a program corresponds to the existence
of one or more processes [48]. Information about each process is stored in kernel
data structures known as process control blocks (PCB), which consists of the program
code and associated data that describe the state of the process. Virtual memory
provides process memory isolation by giving each process a unique non-overlapping
virtualized view of memory. Each process is under the illusion that is has exclusive
access to the full range of memory, limited only by the addressing scheme used by
the system.

Processes reference virtual memory locations only, and the translation between vir-
tual addresses and physical addresses is transparent to the process. This translation
requires the support of hardware, in the form of a memory management unit (MMU)
interposed between the processor and memory, through which each memory refer-
ence passes. The mappings between virtual and physical memory addresses are
stored in page tables, which map virtual memory pages to equally sized physical
page frames. The PCB of an individual process typically contains a pointer to the
page table (typically stored in a cache or memory) storing the mappings between
that process’s virtual and physical address space. Upon a context switch to another
process, the kernel informs the MMU of the location of the new process’s page table,
before execution is resumed. Unfortunately, this scheme has the effect of doubling
the memory access time, because every virtual memory reference requires one mem-
ory access to fetch the correct page table entry, plus one memory access to fetch the
desired data. This problem can be overcome by using a high-speed cache, called a
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translation lookaside buffer (TLB), which caches recently used page table entries.

The operating system ensures that virtual addresses in different page tables never
map to the same physical address (unless memory sharing is used). Whenever a new
page is brought into main memory, it is either assigned a free page or it will replace
an existing one. If it is assigned a free page this means that no page table entry
maps to this page in memory. Otherwise, the page table entry pointing to the page
to be replaced is updated to indicate that this page is no longer resident in memory
(it now resides on disk), this ensures that only one page table entry points to this
memory page.

Virtual memory protects the integrity and confidentiality of a process’s memory
because the operating system, together with the MMU, ensures that a process cannot
reference memory locations outside its virtual address space. Thus, it is impossible
to access memory belonging to other processes. Whenever a process wants to access
a memory location, the kernel will interpret this location as a virtual address and
perform address translation via the MMU. Because only the page tables entries for
the currently executing process is used for the translation, the process cannot access
pages that have not been explicitly allocated to it, since each page table entry will
either point to a page allocated to the process, or be empty. Further, only the
kernel, running in privileged mode, is allowed to modify the page table entries. This
ensures that a user process cannot maliciously modify its page table entries to point
to physical memory locations allocated to other processes.

Hardware requirements:

• Dual mode

• MMU

4.4 Packet filter firewall

Ethernet will play a crucial role in automotive communications and with TCP/IP
already being an essential part of AUTOSAR [51, 52], in-vehicle networks can now be
inspected in a more traditional way with the use of firewalls. Any host-based firewall
inspects incoming and outgoing network traffic on a host and decides if the traffic
should be allowed or blocked according to a policy. Most major general purpose
operating systems, like Windows and Linux, implement a host-based firewall, based
on packet filtering [53].

In a network consisting of single application ECUs, traffic could be filtered based
on OSI layer 2 (data link) addressing, like for example MAC filtering, since only
one application on each node can send or receive traffic. If several applications are
integrated on the same ECU however, the node needs a way to direct traffic to
specific applications. The most common solution is to make use of ports with the
TCP/IP protocol.
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Packet filter firewalls can be used in any network that depend on OSI layer 3 ad-
dressing [54], like the IP protocol. Traffic to and from a host is filtered according
to a rule-set which resides in kernel space and can only be modified in kernel mode.
When considering TCP/IP traffic the packet filter mainly operates on the network
and transport layer of the TCP/IP stack and packets are filtered according to the
following parameters [55]:

• Source and destination address

• Source and destination port (TCP or UDP)

• Protocol (identifying the type of data)

The firewall inspects every incoming or outgoing packet and compares the param-
eters mentioned above to the rule-set in order to decide if the packet should be
allowed or denied. For example, one ingress (incoming packet) rule might be:

Source address Source port Destination address Destination port action
192.168.0.5 22 Any Any Deny

This rule would deny all communication from 192.168.0.5:22 with the node.

To protect the integrity of the network, no application on the node should be able
to send packets claiming to originate from another node, known as spoofing. The
firewall can prevent this by not allowing packets to be transmitted if the source
address does not match the address of the node. Further, the firewall can control if
an application is allowed to communicate with an application on another node by
only allowing certain source and destination port pairs. Further, a firewall can also
limit the maximum rate at which certain packets can be sent, preventing flooding
of the network to maintain availability of communication.

The main strengths of a packet filter firewall is speed and flexibility [54]. The
network can be partitioned to control the flow of traffic. Packet filters have several
weaknesses however; it is not trivial to configure the firewall to deny all unwanted
traffic due to the complexity of the rule-set and protocols. Further, a packet filter
can not protect against attacks on layers above the transport layer nor can it provide
any advanced user authentication schemes [54].

Hardware requirements

• Dual mode

• MPU/MMU

4.5 Message authentication

Message authentication is the process of confirming that the message comes from
the stated sender, providing authenticity, and that the message has not been al-
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tered, providing integrity. In addition, the message can be encrypted to provide
confidentiality. These properties are crucial for secure communication in any type
of network.

4.5.1 Message Authentication Code (MAC)

A Message Authentication Code (MAC) is a small piece of data which authenticates
a message. The IPSec, TLS, and SSH protocol all make use of MAC to provide the
necessary communication security. To generate a MAC, the sender uses a symmetric
key and the message as input to a cryptographic function which generates a fixed
size block of data (the MAC), which is then appended to the message. The receiver
performs the same action, using the received message and their copy of the key, to
generate a new MAC, which is then compared to the received MAC. If they match,
the receiver can be sure that the message has not been altered, thus the integrity of
communication is protected. A MAC is typically based on either a block cipher or
a hash function.

Cipher-based MAC (CMAC)
A message authentication code based on a cryptographic block cipher is known as
a CMAC. The National Institute of Standards and Technology (NIST) has issued a
CMAC standard with two approved block ciphers, 3DES and AES, and a minimum
key size of 128 bits is recommended [56, 57]. The length of the CMAC can be im-
plementation specific and is a trade-off between security and performance, however
NIST recommends a CMAC length of at least 64 bits.

Keyed hash MAC (HMAC)
A message authentication code based on a cryptographic hash function is known
as a HMAC. NIST has issued a HMAC standard with seven approved Secure Hash
Functions (SHA) which produce a HMAC of 160-512 bits, depending on which hash
function is used [58]. A minimum key size of 128 bits is recommended [57].

The size of the message has a big impact on the performance of cryptographic
hash functions as padding adds a constant cost. This leads to a large overhead for
small messages when using HMAC [59]. However, hash functions generally execute
faster in software compared to block ciphers. The computation of cryptographic
functions is known to be expensive and support should be added through hardware
acceleration.

MAC also provides authenticity of the message by proving that the sender knows
the secret key. However, if more than two parties share the key the receiver can not
be sure who sent the message, only that the sender is trusted. Anyone who possesses
the symmetric key can both generate and validate a MAC, thus non-repudiation is
not achieved since it can not be proven who generated the MAC, not even if only
two parties share the key. An entity could, through hardware support, be limited
to only validating MACs [60], thus improving security and in the special case where
all parties but one are limited to validation non-repudiation is achieved. This is
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also known as a symmetric system with asymmetric properties. To prevent replay
attacks, timestamps and/or sequence numbers should be added to the message before
authentication is made.

Key management is an important factor whenever cryptographic functions are used.
A symmetric key should have an appropriate lifespan, and the system should be
able to securely generate new symmetric keys. Whenever a new key is generated,
it needs to be distributed in a secure way. One common solution is to use a public
key infrastructure to distribute symmetric session keys. However, in a public key
infrastructure one needs to be able to trust that the public key belongs to the entity
claiming ownership. This can be achieved by using a trusted third party, like a public
key authority, who can verify the ownership of the public key. Finally, symmetric
keys need to be securely stored in the system. Storing them in memory is less secure
compared to using a cryptographic hardware module.

Hardware requirements:

• Dual-mode

• MPU/MMU

• Cryptographic ISA extension or a cryptographic hardware module.

4.5.2 Authenticated Encryption

A MAC only provides authentication of the message and anyone who can eavesdrop
on the communication will be able to read the plaintext message. To also protect the
confidentiality of communication, the message has to be encrypted, also known as
authenticated encryption. There are three approaches to authenticated encryption
[61]:

• MtE (MAC-then-Encrypt) - MtE doesn’t provide integrity of the ciphertext,
only the plaintext, since there is now way of knowing if the message is valid
until after decryption. The MAC doesn’t provide any information about the
plaintext. The SSL/TSL protocol uses this approach.

• EtM (Encrypt-then MAC) - EtM provides integrity of both plaintext and ci-
phertext and the MAC doesn’t provide any information about the plaintext.
The IPsec protocol uses this approach.

• E & M (Encrypt-and-MAC) - E&M does not provide integrity of the cipher-
text, only the plaintext, since the MAC is performed on the plaintext. The
MAC might reveal information about the plaintext. The SSH protocol uses
this approach.

EtM has been shown to be the only generically secure method of the three and also
has the advantage of verifying the message before decryption, saving resources in
case the MAC is invalid [61]. Authenticated encryption increases the demand on
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cryptographic hardware support.

4.6 Linux Containers

Linux Containers offer a form of virtualization known as Operating System-Level
virtualization, which differ from traditional virtualization technologies in that the
virtualized artifacts are global kernel resources, as opposed to hardware, and as a
result they incur less CPU, memory, and networking overhead [62]. As such, OS-level
virtualization is used to achieve increased availability and security by isolation in
High-Performance Computing Clusters and distributed hosting data centers (such
as Akami, Google App Engine, Heroku and Amazon EC2) [63]. It is also used
for resource contrained environments, such as mobile and embedded devices [62].
Additionaly, a subset of the features used to build containers are used in ChromeOS
and the Chrome Web Browser for sandboxing.

The linux kernel offers several components which together can be leveraged to isolate
processes inside containers, appearing to run on isolated kernel instances while in
fact sharing the same kernel [64]. These components can be combined differently to
allow for a flexible range of isolation features, from imposing simple resource restric-
tions, to virtualisation of entire linux distributions, or full application sandboxing.
Linux container solutions typically comprise of three major components:

• Capabilities allows fine-grained control of permissions and thus avoiding the
use of root, which bypasses all permission checks, to perform privileged actions
[65]. This allows practicing the principle of least privilege more easily.

• Kernel Namespaces provides process isolation by abstracting global re-
sources to make them appear as a separate instance to processes within each
namespace. They are the fundamental building block of linux containers and
allow for isolation of resources such as network, processes, users, and the
filesystems.

• Control Groups provides a hierarchical interface for managing hardware
resource limits and device access, including CPU allocation and usage, block
device I/O, and more.

4.6.1 Capabilities

Traditional UNIX systems distinguish between privileged and unprivileged processes
when performing permission checks. Privileged processes run with effective user ID
0 (superuser root) and bypass all kernel permission checks, granting it full control
over the system. On the other hand, unprivileged processes run with a non-zero user
ID and are subject to full credential based permission checking. This approach has
long been a source of security issues because of vulnerable setuid programs executing
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as root [41]. A setuid program allows unprivileged users to run an executable file
with the permissions of the owner of the file. When an unprivileged user needs to
perform some privileged operations, it can run a setuid program owned by root to
perform the task. Ideally, the program should only offer a temporary elevation of
privilege by performing the privileged instructions as soon as possible and then drop
all elevated privileges. However, if the program has a vulnerability while running
with root privileges, an exploit may grant root access to an unprivileged user.
The shortcomings of this model is that programs which need only some privileges is
afforded full privileges on the system [66]. This means that the attack surface for root
privilege escalation extends across all processes running as root, all setuid-root
binaries, and any libraries they interact with [45].

Capabilities divide the privileges traditionally associated with the superuser root
into distinct units, allowing finer control of privileges [65]. The key insight to this
model is that programs, not users, exercise privilege. Therefore, capabilities are
a per-thread trait, so can be used to execute programs with only the privileges
which they need to execute. This is in contrast to setuid programs which grant
processes all the privileges afforded to the owner of an executable file, even though
the process may not be acting on behalf of the user. The capabilities available to
a process during runtime is determined from its thread capability sets and the file
capability sets associated with the executed binary.

The three main thread capability sets are:

• Effective: The set of capabilities used by the kernel to perform permission
checks for the process. When capabilites are enabled and the process performs
a privileged operation, the kernel will no longer check that the user ID of the
process equals zero. Instead it checks the process’ effective capability set for
the appropriate capability.

• Permitted: A limiting superset for the effective and inheritable capability
sets, indicating which capabilities a process is allowed to use. If a capability
is a member of the permitted set but not the effective set, it means that
the process has temporarily dropped that capability. Processes are allowed
to add members of the permitted set to the effective set, but can not regain
capabilities dropped from the permitted set.

• Inheritable: The capabilities inherited by a new process, when executed by
the current process. (i.e. the set is preserved across a call to execve(2)).

Executable files have the same conceptual capability sets. Together with the thread
capability sets of the process executing the binary, they determine the process’
new thread capability set upon execution. Note that the thread capability sets are
simply copied to the child upon a call to fork(2), the new set is only computed
when executing a binary. The file capability sets are as follows:

• Permitted: These capabilities are added to the threads effective capability
set automatically, regardless of all other capability sets.
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• Inheritable: The intersection of this set and the threads inheritable set is
added to the threads permitted set, along with the the file permitted set (i.e.
only the inheritable capabilies which are present in both inheritable sets are
allowed to the thread).

• Effective: Actually just a single bit, indicating whether the threads computed
permitted set should be added to the effective thread set upon execution (i.e.
if set, the thread will acquire all its permitted capabilities).

File capabilities reduces the risk associated with running setuid programs, instead
assigning only the minimal set of capabilities needed to an executable binary. Only
processes with the CAP_SETFCAP capability can add file capabilities. However, once
a process has started executing, its permitted capability set can only be reduced,
not increased. Further, it is possible to restrict the use of executable binaries to only
certain users, by granting inheritable capabilities to individual users. Now, instead
of adding the required capabilities directly to the permitted set of the executable file,
the capabilities are added to the inheritable set only, and the effective bit is set. This
ensures that the required capabilities are added to the threads permitted (and thus
effective) set only if the process executing the file has the required capabilities in its
inheritable set (per the rules for computing the thread permitted set). Thus, when
a user without the inheritable capabilites executes the file, the process’s effective set
will be empty and the privileged operation denied.

4.6.2 Namespaces

Linux kernel namespaces are logical constructs dealing with scope and segmenta-
tion of operating system resources, which allow creating different userland views.
Namespaces wrap global resources in an abstraction, such that processes within a
namespace will appear to have access to their own isolated instance of the resource.
[67]. Currently, there are six different namespaces which all running processes share
initially. Calling the clone(2) system call with accompanied CLONE_NEW flag splits
the global resource identifier tables, creating partitions which provide processes a
unique view of the resource. Processes can join namespaces using setns(2)[68],
while unshare(2) [69] allows creating new namespaces without creating a new pro-
cess.

4.6.2.1 UTS Namespace

Provides domain and hostname isolation, allowing processes in different namespaces
to appear to have different domain and hostnames. While not being very security
relevant, it offers functionality crucial to many web services.
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4.6.2.2 Mount Namespace

Provides per-process isolated views of the filesystem hierarchy. UNIX’s "everything
is a file (descriptor)" approach means I/O resources, inter-process and network com-
munications are exposed as byte streams through filesystem mount points. A newly
created mount namespace is initialized with a copy of the parent filesystem, but any
subsequent mounts or unmounts do not propagate to the parent. This means that
processes in different mount namespaces can mount or unmount hardware devices,
virtual filesystems, etc without affecting the filesystem view of processes in other
mount namespaces.

4.6.2.3 IPC Namespace

Isolates inter-process communication resources identified by means other than filesys-
tem pathnames. Each IPC namespace has its own set of System V IPC identifiers
and its own POSIX message queue filesystem. Objects created in an IPC namespace
is visible to all members of the same namespace, but not to processes in other IPC
namespaces. Thus, inter-process communication is restricted to process within the
same namespace. Note that this namespace does not isolate any shared memory
regions, as Linux creates and mounts shared memory segments as objects in the
virtual filesystem.

4.6.2.4 Network Namespace

Provides isolation of system networking resources such as network devices, IP pro-
tocol stacks and routing tables, firewall rules, and more [67]. Each physical network
device can only exist in one namespace, but virtual network device pairs can be used
to connect processes in different namespaces or to create a bridge to the physical
network device in another namespace.

4.6.2.5 PID Namespace

Protects against cross-application attacks and information leaks between processes
in different PID namespaces [45] by allowing processes in different PID namespaces
to use the same process identifier [70]. PID namespaces can be nested to create
fully isolated process trees where the first created process in each namespace will
be the "init" process with PID 1. Processes in a PID namespace is only visible
to other processes in the same namespace and to processes in the direct ancestor.
Therefore, system calls which target other processes by specifying a process ID (such
as kill(2), setpriority(2) or ptrace(2)) can only be used on processes in the
same namespace or on processes in descendant namespaces. Further, any call to
reboot(2) will now signal to the "init" process of the targeted namespace (instead
of rebooting the system) and will only affect its descendant processes.
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4.6.2.6 User Namespace

This is the most recently introduced namespace, and perhaps the most important
one with regards to container security. User namespaces isolates security-related
attributes such as user and group IDs, root directories, and capabilities between
namespace instances [71]. This allows running processes in unprivileged containers,
in which processes can have an unprivileged user ID outside its associated names-
pace while having user ID 0 (root), and thus full privileges, inside the namespace.
This means that if an attacker manages to escape the container they will find them-
selves running only with the capabilities afforded to the "nobody" user outside the
container. User namespaces can be nested, such that each newly created user names-
pace creates a parental relationship where the parent of the new namespace is the
user namespace where it was created.

User namespaces are implemented as mappings from user and group IDs insde a user
namespace to a corresponding set of IDs in its parent user namespace. The mappings
define a range of user and group IDs internal to the namespace to be mapped to an
ID range of the same length in the parent user namespace. Essentially, each user
namespace is assigned a one-to-one mapping of some range of IDs in the initial user
and group ID range which are shifted inside the user namespaces, such that each
user namespace can have an internal ID 0 which map to different non-zero IDs in
the initial range. Whenever a process performs an operation requiring permissions
based on user or group ID the kernel maps the internal ID to the ID in the initial
range to perform the permission check. For instance, when a process creates a file,
the kernel assigns an ID in the initial ID range as the file owner. Further, when
a process executes a set-user-ID program, its effective user ID is changed to the
mapped value in the initial ID range. However, if no such ID is mapped for that
particular user namespace, the effective ID is left unchanged. This ensures that
a process cannot execute a set-user-ID program to gain the privilege of a user ID
outside its ID range in the initial user namespace.

An individual process is a member of exactly one user namespace and can reassociate
to another user namespace only if it has the CAP_SYS_ADMIN capability in the target
namespace [68]. Processes created in a new user namespace start out with a complete
set of capabilities in that namespace. The same is true for existing processes joining
newly created or existing user namespaces. Further, any capability that a process is
afforded in a user namespace, it is afforded in all descendant user namespaces as well.
However, all capabilities in the current namespace are dropped whenever a process
joins, or is created in, another user namespace. Thus, even if the new namespace
is created or joined by a process with root user ID in the initial namespace, it will
no longer have any capabilities in the previous or parent namespace. Therefore, a
process can never have any capabilities in an ancestor user namespace. This also
protects against processes trying to gain elevated privileges in the current namespace
by leaving it and later rejoining. Because the CAP_SYS_ADM capability is dropped
when leaving the namespace, any attempt to rejoin the namespace will be denied.
Further, processes are not allowed to join their already associated user namespace,
as this could be used to regain any dropped privileges.
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Creating new non-user namespaces require the CAP_SYS_ADMIN capability. However,
this is not the case for user namespaces, which can be created by any unprivileged
process. As processes start out with a complete capability set in their new user
namespace, they are free to create non-user namespaces inside their user namespace.
A newly created non-user namespace is owned by the user namespace in which
the process that created it resides at the time of creation. The interpretation of
effective capabilities is changed when applied inside user namespaces. A process has
a capability in a particular user namespace only if it is a member of said namespace,
or one of its ancestors, and its effective capability set includes the capability. Further,
the capabilities afforded to a process within a certain user namespace only permit it
to perform privileged operations on resources governed by the non-user namespaces
associated with that user namespace. This is because the kernel will now perform
all permission checks for global resources governed by a non-user namespace against
the capabilities in the associated user namespace. Therefore, the isolated view
of global resources which non-user namespaces provide can only be modified by
privileged processes in the owner user-namespace (or its ancestors) of each non-user
namespace.

Consider creating a new user namespace from the initial user namespace without
creating any new associated non-user namespaces. A process running in this user
namespace will not be able to perform any privileged operation on any global re-
source, even though it has a full set of capabilities in its user namespace. This is
because it shares all non-user namespaces with the initial user namespace, in which
it has no capabilities. If it wants to mount a filesystem it must create a new mount
namespace, or if it wants to change its hostname it must create a new UTS names-
pace, and so on. Furthermore, there are some resources which are not yet namespace
aware, on which privilege operations require privilige in the initial user namespace.
For example, loading kernel modules, setting process priorities, and creating device
nodes.

In conclusion, user namespaces allow unprivileged users to use functionality other-
wise limited to the root user, while limiting the scope of that privilege to a user
namespace. Thus isolating the effects of said functionality from the runtime envi-
ronment of the wider system.

4.6.3 Control groups

Control groups [72] are a kernel feature which allow organizing processes into hier-
archical groups (known as cgroups), and applying hardware resource limiting and
monitoring, as well as access control, to these resources on a per-group basis. Thus,
cgroups isolate and limit resource usage over a group of processes, to control system
performance or security [45]. Limiting and monitoring of resources is implemented
in a set of per-resource-type subsystems, known as resource controllers, that mod-
ify the behaviour of processes in a cgroup attached to a given controller. When
attached to a cgroup, controllers allow for control of how processes in the cgroup
can use the associated resource. For instance, it is possible to control things such as
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memory usage and allotted CPU time, or to restrict the processes to execute only
on a specified set of processor cores.

Cgroups form a hierarchy, where the limits defined for a cgroup at one level will gen-
erally affect the descendant cgroups at lower levels. This ensures that limits placed
on a cgroup at a higher level cannot be exceeded by any descendant. Therefore,
limits for cgroups at lower levels can only be constrained further, never extended.
Further, the rules for how cgroups and controllers are allowed to be associated en-
sures that there is only one way that a process can be limited or affected by a given
controller. The Linux kernel provides twelve controller subsystem, each representing
a single resource. Different cgroups can be associated to different instances of each
controller subsystem, to assign different limits per cgroup. The following are the
controller subsystems relevant for this thesis:

• cpu: Controls scheduling of CPU access to cgroups by assigning either relative
CPU shares, or ceiling enforcements [73]. Assigning relative shares means that
each cgroup will receieve a share of CPU time equal to its share of the sum of
shares for all cgroups on the system. Thus, the actual amount of CPU time
available to a cgroup will depend on the number of cgroups on the system
and their relative shares. However, these limits only apply when the system
is busy. When CPU shares are used, a cgroup may receive additional CPU
time whenever there are idle CPU cycles. If hard limits are needed for the
amount of CPU time a cgroup can utilize, ceiling enforment can be used. This
allows specifying an upper limit of CPU time allocated to a cgroup during
each scheduling time period. Therefore, when ceiling enforcement is used, a
cgroup cannot use more than a fixed amount of CPU time even if there are
idle CPU cycles available.

• cpuset: Facilitates assigning individual CPUs and memory nodes to cgroups
(this includes all logical processing units on which a process can execute). This
can be used to restrict processes to execute only on a subset of available CPUs
and memory nodes. Further, it is possible to give a cgroup hierarchy exclusive
access to its assigned CPUs and memory nodes. This means that no other
cpusets other than direct ancestors and descendants can share the CPUs or
memory nodes specified for the cpuset.

• memory: Supports limiting of memory allocation and swap space usage to
processes in a cgroup. By default, if processes tries to consume more memory
than they are allowed, they are immediately terminated. Optionally, this
feature can be disabled such that processes are paused until memory has been
freed.

• devices: Can allow or deny access to devices by processes in a cgroup. Is
typically used to implement a whitelist of devices from the Linux Device List
which members of a cgroup is allowed to access. Further, it is possible to
specify whether the access type should read, write, or both, and whether a
cgroup is allowed to create new devices.
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• blkio: Controls I/O devices to limit bandwidth or access on block devices (for
example disks) by processes in cgroups. Two policies for I/O limiting is avail-
able. Proportional weight division allows setting weights to specific cgroups,
thus allocating a percentage of all available I/O operations per cgroup. I/O
throttling sets an upper limit on I/O rates, either as the number of operations
per second or as the number of bytes per second.

• net_cls: Allows tagging network packets with a class identifier which can be
used to identify from which cgroup a network packet originates from. This in
turn can be used in firewall rules to filter or limit packets sent from different
cgroups.

• net_prio: Provides a way to dynamically set the priority of network traffic
originating from various cgroups, for each network interface. The priority is
used internally by the system and network devices to decide which packets are
sent, queued, and dropped.

• pids: Can be used to limit the maximum number of processes that may be
created in a cgroup hierarchy. Helps to protect against fork bombs [45].

4.6.4 Security offered

The advantages, in terms of security, offered by Linux containers is the ability to
greatly reduce attack surfaces and to isolate applications, and thus attacks, to only
the required components, interfaces, libraries, and network connections [45]. This
can be achieved with negligible impact on performce, when compared to running
Linux without containers.

Integrity and Confidentiality of the filesystem (Storage) is protected (beyond simple
Discretionary Access Control) through the use of separate namespaces, along with
a least privilege capabilities usage. The mount namespace gives processes inside
a container an isolated view of the filesystem, thus allowing to isolate access to
sensitive files between containers. The use of different network namespaces allow
to completely deny processes in a namespace access to any network devices, or to
specify a more fine grained policy through the use of per namespace firewall rules,
thus protecting the Integrity of communication. This means that a process can be
completely restricted from the network, or to only be allowed to communicate with
certain other nodes on the network. Thus, network namespaces allow specifying a
per-process least privilege model on communication, ensuring that an attack can
only spread to any nodes which the process is allowed to communicate with.

Further, user namespaces and unprivileged containers offer an added layer of protec-
tion against privilege escalation attacks and container escapes. A container escape
occurs if an application interacts with the host or another container in a manner
not intended. When using user namespaces, in the event of a container escape, the
compromised process will have no privilege outside the container, and as such the

40



4. Security Mechanisms

harm it can inflict is limited to that of the nobody user. Therefore, the compromise
of a privileged process running inside a container is isolated to that container.

Integrity and Confidentiality of memory is protected due to the Linux kernel’s use
of virtual memory and the process abstraction, protecting memory access to the
memory space of another process. Again, user namespaces add another layer of
protection of the memory, as processes running with privilege to access the memory
space of other processes (f.e. root) will not have those privileges outside of its
container. A process can use the ptrace(2) syscall to read or manipulate the
memory space of another process only if it is executing with root privileges in
the initial user namespace or if it has the CAP_SYS_PTRACE capability in the user
namespace of the target process. Because a process only has any capabilities in its
own user namespace, such privileged processes are only allowed to access memory
of other processes inside the same container.

Additionally, Linux Containers can protect the Availability of computing, memory,
storage, and communication through resource management with cgroups. Setting
limits on the amount of disk I/O, memory, and CPU time that processes are allowed
to use mitigates denial-of-service attacks that aim to exhaust these resources [74].
However, the blkio cgroup only allows limiting of disk I/O bandwidth, it does not
allow setting any limits on the total amount of disk usage. Instead, using separate
disk partitions mounted in different mount namespaces protect against denial-of-
service attacks where a compromised application tries to exhaust the entire disk
space, further protecting the availability of storage.

Denial-of-service on the network can be mitigated by tagging network traffic with
class identifiers and priorities. The class identifiers can then be used to filter or
limit egress traffic in the Linux kernel firewall, which can mitigate attacks where a
compromised process is used to exhaust network bandwidth to disrupt other nodes
on the network. Setting priorities on the network traffic can protect from denial-of-
service attacks where an application tries to exhaust network bandwidth from other
processes on the same system. Traffic with higher priority will take precedence in
the send queue, and if a network device is exhausted the low priority traffic will be
dropped from the send queue.

4.6.5 Container threats

The Linux kernel features which comprise Linux containers are relatively new, and
still incomplete, when compared to hardware virtualization. Grattafiori [45] has
performed an extensive examination of container attack surfaces, threats and hard-
ening techniques which highlight the fundamental risks associated with the shared
kernel and the incomplete implementation of kernel namespaces. Further, Hertz [75]
discuss several security pitfalls intrinsic to the design of the kernel container features
and analyze historic container attacks to the highlight the complexity and attack
surface of the container system.
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Clearly, the shared kernel is the fundamental risk of using linux containers to isolate
applications, as sharing the kernel also means that any kernel vulnerabilities are also
shared. Linux is a general-purpose operating system exposing roughly 400 system
calls to user space applications, this is a large amount of code which many applica-
tions might not need to fulfill their functionality. The attack surface of the kernel is
huge, and several of these system calls have been vulnerable to privilege escalation
attacks. Additionally, loading of outdated or obscure networking kernel modules
have resulted in many trivial privilege escalation attacks. Kernel vulnerabilities
have been discovered in several other features, such as filesystem implementation,
the crypto API, and device drivers (see [45] for a list of CVE links of such vulnerabil-
ities). To reduce this attack surface, container platforms (such as LXC and Docker)
allow the use of system call filtering to restrict which system calls are allowed to be
called by processes inside a container. seccomp-bpf is a system call filtering method
which allow implementing either a whitelist or blacklist of system call IDsr. This
can reduce the kernel attack surface for application to only the needed system calls.

Capabilities are meant to split the role of root into smaller pieces, to make it easier
to practice a least-privilege model. Unfortunately, capabilities are still under devel-
opment and the capabilities model is not entirely intuitive. Kernel developers are
encouraged to associate any new kernel features with existing capabilities, instead
of creating new ones, to keep the number of capabilities manageable [65]. This has
led to a capabilities model where the role of root is split into quite large pieces,
which can be confusing and hard to use correctly. This is highlighted by Spengler
[76], who details how 19 of the available capabilities can be used to gain full root
privileges. For example, the CAP_SYS_MODULE allows to modify the kernel at will,
by loading arbitrary kernel modules, effectively subverting all system security. The
CAP_SYS_ADM capability is the most egregious avenue for privilege escalation, as it
has become a catch-all capability for kernel developers [65]. These issues highlight
the need to drop all unnecessary capabilities, as they are complicated and may offer
more privilege than perceived. An overview of all capabilities and potential abuses
are given in [45].

Another issue is that the namespace implementation is also incomplete, meaning
several kernel features are not yet namespace aware and can be leveraged to allow
information exposure or trivial container escapes [75]. Examples of such features
are the devfs, sysfs, and procfs virtual filesystems, which act as interfaces to
internal kernel data structures. These filesystems allow reading information about
kernel subsystems, processes, hardware devices, etc., and to configure certain kernel
parameters. This greatly increases the attack surface to compromise the host or
other containers. One example of an attack using these features involve changing
the location of a utility that the kernel will call when certain events occur [75].
By changing this location to point to a file within the container, an attacker can
gain remote code execution outside the container. Various other files within these
filesystems can expose information used for information gathering, or to perform
other attacks.

This incompleteness of capabilities and namespaces highlight why the user names-
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pace is a great security advancement for containers. Prior to the introduction of
user namespace, all containers were privileged containers where root inside a con-
tainer equals root on the host. When using privileged containers, protecting the
host relies on dropping of privileges, Mandatory Access Control of non-namespace
aware resources, and system call filtering. These containers are not considered root-
safe by the developers [64]. When using unprivileged containers (facilitated by user
namespace), Capabilities, Mandatory Access Control, and system call filtering are
used as defense-in-depth in the case of kernel security issues, but the security model
no longer relies on them. This is because capabilites now only has meaning within
the user namespace of the process, and modifying non-namespace aware resources
such as procfs requires capabilities in the initial user namespace. However, user
namespaces are relatively immature and due to their sensitive nature and large code
base, since their addition to the kernel several serious vulnerabilities have been dis-
covered. Further, although a privileged process within a container is unprivileged
on the wider system, that process now has access to potential exploits in kernel code
previously only accessible by root.

4.6.6 Hardware requirements:

• Dual mode

• MMU

4.7 Hypervisors

Hypervisors are relatively small control programs placed between one or more hosted
operating systems and the physical hardware which enable the abstraction, or vir-
tualization, of hardware computing resources into several different execution envi-
ronments. These operating systems are referred to as guests and are hosted on the
Hypervisor in a sandboxed environment called a Virtual Machine (VM) which ap-
pear to the guests to be native hardware. The VM behave towards the guest as
native hardware, giving the illusion that the guest is executing on an isolated in-
stance on its private hardware but can, transparent to the guest, limit, manage, and
protect it and its resources while multiplexing the physical resources between sev-
eral VMs. Access to the shared physical resources are arbitrated by the Hypervisor
similarly to how a traditional OS manages concurrent execution of processes.

Virtualization is a proven technology which have been instrumental to the server
and data center markets for decades by enabling server consolidation through the
ability to concurrently execute multiple OSs [77]. One of the key features of server
virtualization technologies is the ability to provide securely isolated (sandboxed)
environments for the execution of untrusted software. The resources are abstracted
such that each VM is almost entirely isolated from every other VM running on the
Hypervisor. This abstraction is achieved with a code base which size is only a frac-
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tion of that of a traditional operating system [78, 79]. This ability to isolate guests
allows addressing the strictest legal, security, and safety design concerns when im-
plementing a system. Due to this and other beneficial features, major mobile and
embedded technology providers have started using virtualization in their devices.
Additionally, there are now several embedded hypervisors available from major em-
bedded software providers, such as Wind River Systems, Green Hills Software, and
others.

The level of abstraction needed to present guests with an exact duplicate of the
underlying system while managing the software complexity and performance over-
head is specific to the architecture, hardware, and guest OSs. There are two main
approaches used to achieve this abstraction:

• Full Virtualization: The guest assumes native control of handware and is
unaware that it’s being controlled by an underlying Hypervisor. This requires
no modification of guest OSs and is typically implemented with the trap-and-
emulate approach. All instructions with potential to impact the Hypervisors
control of resources are trapped and handled by the Hypervisor. This approach
offers the best isolation and security for VMs.

• Paravirtualization: The guest OS is modified to work with the Hypervisor
through hyper calls which the Hypervisor exposes in an interface to the guests.
The intent of this approach is to work around the overheads associated with
Full Virtualization, and have thus been traditionally used for embedded Hy-
pervisors. However, it lacks the portability offered by full virtualization, as
guest operating systems must be modified to work with the paravirtualized
VMM. This also implies a lower degree of isolation offered, compared to full
virtualization because guest operating systems are aware of the VMM. Ad-
ditionally, many architectures now include hardware assistance to overcome
these overheads. Although no extensions to the ISA are technically needed to
support virtualization with this approach„ many of the now available hardware
assists can be used with paravirtualization to further increase performance.

Hypervisors, also known as Virtual Machine Monitors (VMM), can be classified in
two general forms; type 1 and type 2 hypervisors. Type 1 hypervisors are operating-
system-like software built specifically to support virtualization of other operating
systems and are installed as the primary boot system with native control of hard-
ware. Type 2 hypervisors operate within the context of a host operating system
and provide virtualization features to run guest operating systems. Because of the
added overhead of type 2 hypervisors, in terms of performance and security, these
are not considered in this thesis.

To cost effectively implement efficient virtualized systems require support and accel-
eration in the hardware running the Hypervisor. Memory management in particular
is troublesome to virtualize without hardware assists and can have severe impact on
system performance and reliability [77]. I/O management is another obstacle which
hardware assistance can speed up while offering increased protection for VMs.
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Popek & Goldberg [80] formalized the requirements and characteristics of an efficient
Virtual Machine Monitor by describing a set of architecture features of the physical
machine sufficient to support efficient system virtualization. These requirements
define three properties of interest for an arbitrary application running under the
control of a VMM, and still guide virtualization efforts to this day:

• Equivalence (Fidelity): Software on the VMM executes identically to its
execution on hardware, barring timing effects..

• Efficiency (Performance): An overwhelming majority of guest instructions
are executed by the hardware without the intervention of the VMM.

• Resource control (Safety): It must be impossible for that arbitrary pro-
gram to affect the system resources, i.e. memory, available to it; the allocator
of the control program is to be invoked upon any attempt.

Thus, in order to build a VMM supporting system virtualization, all instructions
which may affect the VMM itself must be able to be trapped and handled (emulated)
by the VMM, in order to fullfil the Resource control property. An architecture which
can be virtualized purely with the trap-and-emulate approach is said to be classi-
cally virtualizable [81]. For an instruction set architecture (ISA) to be classically
virtualizable it must support a clean separation of privileged and unprivileged in-
structions. This means that an instruction must either behave equally in user mode
and supervisor mode, or an exception must be thrown when used in user mode to
allow trapping to the VMM. Privileged instructions are those which trap when the
processor is in user mode and that do not trap when the processor is in supervisor
mode. Sensitive instructions are those that attempt to change the configuration
of system resources or that illustrate different behavior or result depending on the
configuration of the system. Architectures such as PowerPC, Motorola 68010, and
IBM S/370 do not include any unprivileged sensitive instructions, and can therefore
be classically virtualized without any architecture extensions.

However, some architectures do not have a clean separation of instruction privilege,
as they were designed before the concept of virtualization was proposed. The x86
and ARM architecture, for instances, were historically not virtualizable because of
sensitive instructions which do not generate traps. They contain instructions which
return different values depending on the mode in which it was executed, which
could allow the guest to observe that it was de-privileged. An example of this is
the x86 popf instruction which replaces all the flags in the flag register with the
contents of the stack when executed in privileged mode, while only replacing some
of the flags when executed in user mode. A de-privileged guest’s attempt to replace
the remaining flags are simply suppressed without generating a trap, rendering the
trap-and-emulate approach useless. These issues have been solved by extending
the architectures with hardware features which typically add one or more modes of
operation to the processors previous dual modes of operation. This allows to fully
virtualize the CPU and fullfil the properties of a classically virtualizable system.
Sensitive operations, such as reading the flag register, can then be emulated in a
virtual CPU and will therefore not affect the host system.
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Because privileged instructions must be trapped and handled in the VMM they cre-
ate extra overhead and cause the guest to run slower than it would natively. The
efficiency property says that all innocuous (unprivileged) instructions must be han-
dled natively by the hardware, without intervention by the VMM. This property is
what differentiates system virtualization from full emulation, where both privileged
and unprivileged instructions are intercepted by the emulator. The performance is-
sues of using trap-and-emulate is exacerbated by privileged data residing in memory,
such as guest page table entries which store mappings and permissions for memory
pages. If the architecture supports virtual memory the guest OS cannot be allowed
direct access to the MMU, since the VMM would no longer be in control of all sys-
tem resources. The guests cannot be allocated true physical memory, which only
the VMM is allowed to manage, instead they are allocated intermediate addresses
to reference. Therefore, one extra stage of address translation is needed to map
guest virtual addresses to host physical addresses. If the hardware provides only
one stage of address translation the VMM must manage the relationship between
these in software. This is typically implemented by maintaining shadow page tables
which store information about the physical location of guest memory. The VMM
must ensure that changes to the guest page tables are reflected in the corresponding
shadow page tables. To maintain coherency between guest page tables and shadow
page tables, accesses to privileged in-memory data must trap to the VMM. The per-
fomance overhead associated with maintaining coherency of the shadow page tables
were big enough that the first generation of x86 hardware extensions, which enabled
full virtualization, performed worse than pure software virtualization [81]. Second
Level Address Translation (SLAT) is a hardware feature providing MMU virtualiza-
tion which eliminates the need for maintaining shadow page tables in software and
the performance overhead associated with keeping them up-to-date [82]. It extends
the CPU page-table walking function to include an extra intermediate address layer
and when a virtual address is accessed the hardware walks both levels to perform the
translation from guest virtual to host physical address. This composite translation
eliminates the need for software shadow tables, but add a performance penalty to
TLB misses. However, this penalty is low compared to the gains from eliminating
the added traps to the VMM [82].

Another obstacle which must be overcome to meet the resource control property
is that of I/O management, especially if the system allows interaction with direct-
memory-access (DMA) capable devices. The DMA controller allows I/O devices to
transfer data to or from its own buffer storage directly to memory. This happens
without intervention by the CPU, which is instead notified via an interrupt once the
transfer of a block has completed. The issue, again, is that the DMA capable devices
are not aware of the mapping between guest-physical and host-physical addreses. If
a guest initiates a DMA transfer using its perceived physical address this might
corrupt the memory of the VMM or other guests. Therefore, address translation
is required when initiating DMA transfers. This translation is possible to manage
in software but (just like with guest virtual address translation) adds significant
overhead and also requires device driver porting [77]. Further, a software only
solution is still susceptible to physical memory corruption by erroneous or malicious
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DMA capable devices. A DMA attack is a physical side-channel attack which uses
an accessory with maliciously constructed device driver to gain access to physical
memory through DMA. An IOMMU is a hardware feature which provides hardware
assisted DMA and adds a level of indirection to DMA by applying the concepts of
virtual memory to it. It performs the address translation without VMM intervention
and also ensures that interrupts are delivered only to the correct guest, allowing
DMA transfers to be passed through between guest and device transparently to
minimize performance overhead. It also protects against faulty or malicious devices
by explicitly assigning memory regions which devices are allowed to read or write
from.

The properties of system virtualization and the use of a Hypervisor offers improved
system protection in terms of Confidentiality, Integrity, and Availability through the
high degree of isolation achieved. Software running in different virtual machines, on
the same hardware, are considered more isolated than when running on a shared
OS because of the properties of a VMM and because VMMs typically have a much
smaller trusted code base. The smaller code base, and thus reduced attack surface,
means that the VMM is less complex to prove secure and offers a higher level of
containment which must be breached to break the isolation. The resource control
property ensures that the VMM can observe or intervene in everything the guests
does to ensure Integrity of virtual resources, including Memory, Storage, and Com-
munication. Confidentiality of memory and Storage is ensured as the resources are
isolated between VM instances. Further, because the VMM has full control of all
resources, it can manage the resource usage for individual VMs to protect against
cross-VM resource exhaustion attacks and offer improved Availability of Memory,
Storage, Computing, and Communication. The VMM can ensure that software run-
ning in one VM does not exhaust software in other VMs of their resources, either
by partitioning the resources beforehand, or by setting limits on the amount of
resources or the frequency of operations on a per-VM basis.

Hardware requirements:

• Dual-mode

• Virtualizable ISA / CPU Virtualization support

• MPU / MMU

• SLAT (nested page tables)

• IOMMU (optional. Protects against DMA-attacks)

47



4. Security Mechanisms

48



5
Evaluation

In this Chapter, the mechanisms presented in Chapter 4 are evaluated with regards
to the support in automotive embedded systems by investigating support in hard-
ware and the AUTOSAR platforms. Also, the breadth of protection offered by the
mechanisms is investigated.

5.1 Protection offered

Table 5.1 shows that the presented security mechanisms in Chapter 4 offers protec-
tion for all the identified asset-attributes pairs in Chapter 3.2. It also shows that
for some assets all attributes can be protected by implementing either one complex
mechanism or by implementing several less complex mechanisms. The abbreviations
used in the tables throughout this chapter is explained below:

• SM - Static Memory

• VM - Virtual Memory

• DAC - Discretionary Access Control

• MAC - Mandatory Access Control

• CTN - Containers

• HYP - Hypervisor

• HMAC - Message authentication

• AE - Authenticated Encryption

• FW - Packet filter firewall
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Asset SM VM DAC MAC CTN HYP HMAC AE FW
Computing A A
Memory C I A C I C I A C I A
Storage C I C I C I A C I A
Communication I I A I A I C I I A

Table 5.1: The breadth of protection offered by the presented security
mechanisms in terms of security attributes (CIA) per asset.

5.2 Hardware Support

The support for the presented security mechanisms in ECU hardware is presented
in this section, in form of tables. The hardware requirements for all mechanisms are
summarized below:

• SM - Requires Dual-mode and an MPU/MMU.

• VM - Requires Dual-mode and an MMU.

• DAC - Requires Dual-mode and an MPU/MMU.

• MAC - Requires Dual-mode and an MPU/MMU.

• CTN - Requires Dual-mode and an MMU.

• HYP - Requires Dual-mode, Virtualizable ISA, an MPU/MMU, and SLAT.

• HYP+ - Same requirements as Hypervisor but also requires an IOMMU.

• HMAC - Requires Dual-mode, an MPU/MMU and either cryptographic ISA
extension or a cryptographic hardware module.

• AE - Requires Dual-mode, an MP/MMU, and either cryptographic ISA ex-
tension or a cryptographic hardware module.

• FW - Requires Dual-mode, an MPU/MMU.

5.2.1 Microcontrollers

The list of microcontrollers (MCUs) in this section are provided and supported by
ARCCORE AB. These MCUs are commonly used in the automotive domain and are
often used for AUTOSAR Classic supported software. For this thesis, they represent
the current hardware used in automotive embedded systems. For each MCU, the
hardware requirements for each security mechanisms found in Section 4 are checked
to determine the current support. Table 5.2, 5.3, and 5.4 show the support for each
mechanism in Renesas, ARM, and PowerPC MCUs.
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MCU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
RH850F1L X X X
RH850F1H X X X X X X

Table 5.2: Renesas RH850/F1x MCUs

MCU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
STM32F107
Zynq 7000 X X X X X
TMS570LS12 X X X
TMS570LS1114 X X X
TMS570LC43 X X X
Jacinto 6 X X X X X X X X X X

Table 5.3: MCUs with ARM architecture.

MCU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
MPC5567 X X X X X X
MPC5604B X X X
MPC5606B X X X
MPC5606S X X X
MPC5607B X X X
MPC5634M X X X X X
MPC5643L X X X X X
MPC5644A X X X X X
MPC5645S X X X X X
MPC5668G X X X X X X
MPC5744P X X X X
MPC5746C X X X X X X
MPC5748G X X X X X X
MPC5777M X X X X X X
SPC56EL70 X X X X X
SPC560B54 X X X

Table 5.4: MCUs with PowerPC architecture.

5.2.2 Cores

In this section, a number of cores currently found in automotive ECUs are presented,
along with a number of more advanced processor cores planned to be used in future
ECUs. The list of cores was given by ARCCORE AB and Volvo Trucks AB but
is not an exhaustive list of cores used in the automotive domain but aim to show
support in the most common ECUs. The hardware requirements for each security
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mechanisms found in Section 4 are checked to determine the current and future
support.

5.2.2.1 Current

The Arm Cortex-R series include real-time processors aimed at systems where relia-
bility, high availability, fault tolerance and/or deterministic real-time responses are
needed [83]. Further, the Cortex-R series is used in systems which require functional
safety to avoid hazardous situations, like medical and autonomous systems. Table
5.5 shows the support for each mechanism in Cortex-R cores.

CPU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
R4 X X X X
R5 X X X X
R52 X X X X X X
R7 X X X X
R8 X X X X

Table 5.5: ARM Cortex-R cores

The Arm Cortex-M series include a range of scalable and energy efficient processors
optimized for cost and power-sensitive MCU and mixed-signal SoCs for several do-
mains including automotive, industrial, and energy grid [84]. Table 5.6 shows the
support for each mechanism in Cortex-M cores.

CPU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
M0
M0+ X X X X
M3 X X X X
M4 X X X X
M7 X X X X
M23 X X X X
M33 X X X X

Table 5.6: ARM Cortex-M cores

Arm Cortex-A is a series of more powerful processors used in mobile devices, net-
working infrastructure, home and consumer devices, automotive in-vehicle infotain-
ment and driver automation systems, and embedded designs [85]. The Cortex-A
series supports a wide range of full operating systems like Linux, Android, and
Chrome. Table 5.7 and 5.8 show the support for each mechanism in Cortex-A cores.
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CPU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
A5 X X X X X X
A7 X X X X X X X X
A8 X X X X X X
A9 X X X X X X
A15 X X X X X X X X

Table 5.7: Currently used ARM Cortex-A cores.

5.2.2.2 Future

CPU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
A17 X X X X X X X X
A32 X X X X X X X X X X
A35 X X X X X X X X X X
A53 X X X X X X X X X X
A55 X X X X X X X X X X
A57 X X X X X X X X X X
A72 X X X X X X X X X X
A73 X X X X X X X X X X
A75 X X X X X X X X X X

Table 5.8: Future ARM Cortex-A cores.

Apollo Lake is a series of cores developed by Intel intended for domains including
new in-vehicle experiences and advancements in industrial and office automation
[86]. Table 5.9 show the support for each mechanism in Apollo Lake cores.

CPU SM VM DAC MAC CTN HYP HYP+ HMAC AE FW
Pentium J4205 X X X X X X X X X X
Pentium N4200 X X X X X X X X X X
Celeron J3455 X X X X X X X X X X
Celeron J3355 X X X X X X X X X X
Celeron N3350 X X X X X X X X X X
Celeron N3450 X X X X X X X X X X
Atom x7-E3950 X X X X X X X X X X
Atom x5-E3940 X X X X X X X X X X
Atom x5-E3930 X X X X X X X X X X

Table 5.9: Intel Apollo lake series of cores.
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5.3 Recommended usage

When performing threat modeling of a system/product, the components are often
assigned a criticality level ranging from 1 (low) to 5 (high). To simplify the process
of choosing mechanisms to protect components, it is useful if also the mechanisms
are assigned criticiality levels for which they are suited for.

Table 5.10 summarizes our recommendations for the suitable use of each mechanism,
with regards to the determined criticality level of an application. The recommen-
dations are based on the breadth of protection offered, in combination with the
complexity of each mechanism. The complexity is measured both in terms of hard-
ware features needed for efficient use, as well as any issues identified in Section 4,
which might circumvent the protection offered. Examples of issues which might
impact negatively on our recommendation include known vulnerabilities or complex
management and configuration. To simplify the evaluation, the summary only in-
cludes the mechanisms suited to separate components running on the same hardware
platform.

The base criteria used to determine the highest possible criticality level suited for a
mechanism is the degree of separation it offers, in terms of the amount of assets it
protects. The following scoring criteria was used to assign a highest suited criticality
level:

• Critical: All four assets must be protected.

• High: Any three assets must be protected.

• Medium: Any two assets must be protected.

• Low: At least one asset must be protected.

• QA: Protection not strictly required, but adds quality assurance.

If two or more mechanisms are assigned the same maximum criticality level, issues
identified in Section 4 were used to determine the relative strength and maturity of
these mechanisms and potentially decrease assigned levels.

To ensure that unnecessarily complex or demanding mechanisms are not used to
protect applications of lower criticality levels, a lower bound for the suitable crit-
icality levels were assigned. The baseline lower bound was assigned based on the
required hardware features identified in Section 4, and were determined as follows:

• High: Dual Mode, MMU, and Virtualization Extension (SLAT, IOMMU)

• Low: Dual Mode & MMU

• QA: Dual Mode & MPU

Additionally, issues detailed in Section 4 were used to determine whether any known

54



5. Evaluation

complexities makes a mechanism unsuited for a lower level of criticality. If so, the
lowest suited level was raised accordingly.

Level HYP CTN MAC VM SM DAC
Critical X
High X X
Medium X X
Low X X X X X
QA X X

Table 5.10: This table states, for each isolation mechanism, the levels of
criticality they are suited for.

According to the critera mentioned above, hypervisor and container were both as-
signed Critical as the maximum level. However, considering the issues related to
containers detailed in Section 4.6.5, the maximum level of containers was lowered to
High. Similarly, MAC and DAC were both assigned QA as the minimum level, but
due to the complex management of MAC (see Section 4.1.2) the minimum level of
MAC was raised to low.

5.4 AUTOSAR Support

5.4.1 AUTOSAR Classic

The list below shows whether the identified security mechanisms are specified in
the AUTOSAR Classic specifications. If vendors offer known implementations of
not specified mechanisms, this is also listed. An interview was conducted with
ARCCORE AB to provide the basis for the list.

• Static memory allocation with memory protection - Specified

AUTOSAR OS provides protective functions (memory, timing etc.) at run-
time. The specification states that the OS module shall prevent write accesses,
and may prevent read accesses to an applications private data sections by
other non-trusted applications. Further, it specifies that the OS may provide
an application the ability to protect its code sections from being executed by
other non-trusted applications [87]. This was also confirmed by ARCCORE.

• Virtual Memory - Not specified

AUTOSAR OS requires that all applications must use the same address space,
i.e. virtual address spaces are not allowed [87]. ARCCORE also stated that
Virtual memory is not supported since memory must be configured statically.

• Discretionary Access Control - Not specified
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There is no concept of users specified in AUTOSAR OS. ARCCORE stated
that there has been no demand for this type of access control from its customer
base.

• Mandatory Access Control - Not specified

ARCCORE stated that there has been no demand for this type of access
control from its customer base.

• Packet filtering firewalls -Not specified

Although the AUTOSAR Classic specification contains modules specifying
both Ethernet and TCP/IP interfaces, it does not specify anything about
TCP/IP or Ethernet packet filtering. However, some suppliers of AUTOSAR
services have implemented such functionality in their Service Layer offerings
[88].

• Message Authentication - Specified

The Secure On-board Communication (SecOC) module provides secure com-
munication services, including message authentication and encrypted commu-
nication [89].

• Containers - Not specified

AUTOSAR classic does not support virtual memory, which is a requirement
for containers.

• Hypervisors - Not specified

The Classic specification does not specify anything about support for virtual-
ization of the platform. However, several vendors have implemented embedded
hypervisors which support running AUTOSAR Classic systems in parallel with
other systems [90] [91].

5.4.2 AUTOSAR Adaptive

The AUTOSAR Adaptive Platform implements the AUTOSAR Runtime Environ-
ment for Adaptive Applications (ARA) which exposes an operating system API
conforming to POSIX specification PSE51, and an interface to services in the layer
beneath. The PSE51 profile is targeted to small embedded devices with no support
for filesystems or MMU. However, even though the API presented to the applica-
tions is only allowed to be PSE51, the operating system underneath may be full
POSIX and the Foundation and Service layers can make use of that API to imple-
ment the functionality they provide to the applications. The PSE51 restriction is for
the applications only, to allow for portability between different operating systems.

In contrast to the Classic platform, Adaptive AUTOSAR does not define its own
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operating systems. Instead, any POSIX compliant OS can be used [92] and AU-
TOSAR has indicated that they are willing to cooperate with suppliers to define
standardized interfaces to operating systems such as Linux, Android, Windows, and
more [21]. This means that all of the mechanisms evaluated in this thesis can be
supported, since they are supported in most modern operating systems.
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6
Conclusion

The current distributed automotive electronic architecture is no longer scalable, due
to increased cost, weight, and system complexity. Therefore, automotive manu-
facturers are moving towards centralizing functionality of several ECUs to one or
more high performance nodes. The aim of this thesis was to evaluate mechanisms
which mitigate security issues associated with centralizing functionality to the same
automotive hardware platform. To achieve this, we answer the following research
questions:

• What are the security threats associated with centralizing function-
ality?

The centralization of functionality means that applications must now share
resources which were previously physically separated, leading to an environ-
ment similar to that of modern general-purpose systems. Thus, the associated
security issues are related to the sharing of critical resources such as mem-
ory, filesystem, processor time, and communication. The issues include illegal
use of memory and filesystem, Denial-of-Service attacks, and impersonation of
other applications on the same node. Based on the identified issues, specific
threats are identified. These issues show that separation of resources is criti-
cal to protect the safety and privacy of individuals, as well as operational and
financial objectives of organizations.

Denial-of-Service attacks, such as resource starvation attacks, are a bigger is-
sue in an automotive embedded systems than in most other domains. This is
because the loss of service might impact the safety of individuals, whereas in
other domains loss of service might simply be an inconvenience. To mitigate
such attacks require the use of more complex security mechanisms, such as
Hypervisors or Containers, which offer granular resource management capa-
bilities.

• Which mechanisms exist that could mitigate the identified security
threats?

To protect against the presented issues, it is crucial to be able to separate access
to resources between the integrated software applications. A set of security
mechanisms which offer varying breadth of protection against the identified
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6. Conclusion

security issues were presented. It was shown that these mechanisms can be
combined to mitigate all or a subset of the identified issues. It was found that
the achievement of the Availability attribute required relatively more complex
mechanisms, as this typically involves resource management in some form and
thus a rather complex operating system.

• What metrics can be used to evaluate such mechanisms? This thesis
considered the following metrics when evaluating mechanisms:

– Breadth of protection offered

– Hardware requirements

– Strengths and known weaknesses

These metrics were combined in order to recommended a suitable criticality
level for each of the mechanisms. A scoring criteria which considers each of
the metrics were derived for this use.

The Confidentiality, Integrity, and Availability attributes were found to be
good parameters to determine the breadth of protection offered. These at-
tributes are at the heart of information security and all other attributes, which
were considered for use, were found to be special cases of the CIA triad. The
breadth of protection offered by each mechanism were mapped in a table so
that correct mechanisms can be selected based on security needs. Further, a
mapping between the mechanisms and their identified hardware requirements
was produced, which can be used to determine the support for the mechanisms
in other hardware.

• What support exists for these mechanisms in automotive embedded
systems?

The support for security was shown to be lacking, in both the available ECU
hardware as well as in the AUTOSAR Classic platform, the de-facto open
industry standard for automotive software. However, the hardware targeted
to be used in future ECUs, along with the next-generation software standard
Adaptive AUTOSAR, show support for all the presented security mechanisms.
This shows that the automotive industry have realized that cyber-security
will be a major challenge in the development of future connected autonomous
vehicles and aim to adopt a strong security posture.
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for future work

We only used the Confidentiality, Integrity, and Availability security attributes as a
metric when evaluating the protection offered, because of the limited time available
even though we considered using an extended set of security attributes. When
reflecting back on this decision, we feel that this was the correct decision as extending
the set of attributes would only make the evaluation method more complex. Many of
the other attributes do not apply to the assets considered in this thesis. Therefore,
presenting them for some of the assets could create a misconception that some of
the mechanisms do not offer wide enough protection.

This thesis work only considered the breadth of protection offered by each of the
identified mechanisms. The result offers a guide for selecting the appropriate mecha-
nisms to protect the desired assets, in terms of the CIA security attributes. However,
we do not evaluate the relative strength of the protection offered between the indi-
vidual mechanisms, i.e. the depth of protection of the security attributes which they
offer. For example, two mechanisms which protect the same security attributes of
the same asset may be considered to offer varying strength of protection depending
on, for instance, the complexity or maturity of the mechanism. A recommendation
for future work might be to develop a scoring system which can be used to rank the
security mechanisms with regards to the strength of protection offered. This scor-
ing might include metrics such as the complexity of implementation (in terms of the
Trusted Computing Base), the maturity of the solution, management overhead, per-
formance overhead, hardware requirements, etc. When presenting the mechanisms
we detailed strengths and weaknesses of each mechanism which can be factored in
the scoring system.
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